Июнь 2005 г. |
Российская наука и мир (по материалам зарубежной электронной прессы) |
По приглашению российских коллег из Института медико-биологических проблем РАН ученые из исследовательского центра НАСА принимают участие в научных экспериментах по изучению воздействия гравитации на биологические процессы.
NASA scientists are collaborating with Russian colleagues in an effort to learn more about cell growth in space.
At the invitation of the Russian Academy of Sciences' Institute of Biomedical Problems, investigators from NASA Ames Research Center in California's Silicon Valley are participating in pre- and post-flight science experiments designed to examine gravity's relationship to biological processes. The experiments were launched May 31 aboard the Russian Foton-M2 mission from the Baikonur Cosmodrome in Kazakhstan, and will be recovered 16 days later when the capsule returns to Earth near the border between Russia and Kazakhstan. The European Space Agency and a number of other space agencies also are cooperating with Russia on this mission.
"We have a rich history of highly productive research carried out on Russian unmanned spacecraft over several decades. We are pleased to be working with our Russian colleagues in support of the Vision for Space Exploration," said Terri Lomax, deputy associate administrator for research at NASA headquarters, Washington.
"Our collaboration with the Institute of Biomedical Problems and the experiments aboard the Foton spacecraft will help us understand how the microgravity environment affects live organisms," said Eduardo Almeida, NASA Ames principal investigator for both the gecko cell growth and ribbed newt tissue regeneration studies.
Studies conducted with specimens flown aboard the Foton-M2 mission will examine cell growth and morphological tissue changes in geckos, cell proliferation and tissue regeneration of ribbed newts, gene expression and neural re-adaptation of snail vestibular cells to Earth's gravity, and spaceflight's effects on genetic structures in bacteria.
"This is a unique study, and a unique opportunity to collaborate with our Russian counterparts," Almeida said.
The two other American principal investigators, NASA Ames researcher Richard Boyle, and Barry Pyle of Montana State University, Bozeman, who are conducting separate studies, have been instrumental in facilitating the scientific goals of the Foton-M2 mission. Boyle is the NASA Ames science lead for Foton-M2 and is working with investigators at Russia's Institute of Higher Nervous Activity and Neurophysiology to study the neural and biochemical responses of snail statocyst receptors, which play essentially the same role as a human's inner ear in giving balance cues, following microgravity exposure. They will investigate the process of re-adaptation to Earth's gravity and how this affects coordination in the brain and nervous system.
Pyle is participating in an experiment studying the transient and permanent effects of spaceflight on genetic structures of the bacteria Streptomyces lividins. Mike Skidmore, the NASA Ames-based project manager, is teamed with his deputy, Marilyn Vasques, to coordinate all aspects of the American participation in this international Foton-M2 flight.
"We know that long-term space travel results in a loss of bone and muscle mass. Our participation in the Foton mission will allow us to accurately quantify the rates of cell growth in whole animals using nucleotide analog markers. The results from this study will be used to test our theory that gravity gives a signal for cells to grow, and that it promotes stem cell-based tissue regeneration," said Almeida.
Copyright © 1999-2005 SpaceRef Interactive Inc. All rights reserved.
* * *
Прошлое часто воспринимается как время огромных масштабов и великих свершений. Но у сибирской науки есть не только прошлое, но и будущее. Пример - Институт ядерной физики им. Г.И. Будкера в Академгородке.
Soviet scientists were able to push science to the limit, discovers Tim Radford. Could we learn from their lateral problem-solving?
The past is another country. They do things differently there, and on a grand scale. Eduard Kruglyakov is deputy director of the Budker Institute of Nuclear Physics at Akademgorodok, the fabulous city of science built near Novosibirsk in Siberia in 1958 by the Soviet Union. The institute has 700 scientists and engineers, and 1,000 people in its machine shop. Want a free electron laser? A fusion experiment? A portable particle accelerator? No problem. Want to think of a new way of using it? They have the technology, says Kruglyakov.
In the old Soviet days, grain imported from the US and Australia tended to be infested with weevils by the time it arrived at Odessa on the Black Sea. The little beasts then consumed an estimated 6% of the people's bread. So physicists rigged electron laser beams at the docks and irradiated the grain as it came in. The treatment didn't kill the weevils, but it sterilised them: there was no second generation of larvae to continue the devastation. It was possible, he said, to blast 300 tonnes an hour.
Two accelerators totalling 100kW operated at Odessa for 20 years, and are still there. In all that time, he says, a cathode had to be changed, once.
Having saved the people's bread, the nuclear engineers then turned to the people's water. The aquifer below the city of Voronezh had been contaminated by synthetic rubber manufacture, he told a delegation from the British Council, the Royal Society and the British press. The water was unusable. High-energy radiation, notoriously, severs DNA, destroys proteins and disrupts life. So could the toxic molecules sluicing through the subsoil of Voronezh be rendered harmless by a blast of radiation?
"Budker proposed an idea: let's pump this water and irradiate it by the beam," he says. "It was a lake with a diameter of about 30km, and after 10 years of treatment ... they have pure water underground."
A pamphlet celebrating 40 years of the institute calculates that two accelerators between them were irradiating up to 35,000 cubic metres of water a day.
Then there was the factory chimney in Warsaw: it pumped out vast quantities of sulphur dioxide and nitrous oxide, the ingredients of acid rain. Other nations reduced their discharges. Soviet engineers irradiated them: two accelerators reduced the concentration of sulphur to a 20th of their original levels, and nitrogen oxides fourfold.
Lessons from Voronezh were deployed elsewhere. Water trapped by a new dam in the Nevsky inlet in the Gulf of Finland was judged ecologically unsafe - it contained discharges from St Petersburg and other cities - but massive chlorination seemed a bad idea, too. So electron beam accelerators were tested at the Petrodvorets municipal waste water plant, to kill off the E. coli cells and saprophytes, reduce chemical and biological oxygen demand, and neutralise biological detergents.
Even after the collapse of the Soviet Union, Budker engineers were in demand. In 1994 they embarked on a plan to clean up the waste waters of the city of Kirishi, and in particular an industrial plant discharging oil products, phenols, ammonia, nitrates and detergents, at the rate of 78,000 cubic metres a day, with five machines of 150kW each.
How expensive this technology was depended on the dollar-rouble exchange rate. The Soviet-era rouble exchanged for roughly a dollar. Then came the Russian Federation and "conditions of high economic instability". But the institute's scientists still have lateral solutions to enduring problems.
Take actinides, says Kruglyakov, some of the nastier byproducts of nuclear power: very heavy, very toxic, and very long-lived. "In this sense, they are very dangerous," he says "because if you have radioactive waste with a short time of life, after 100 years it will be absolutely decayed. Long-lived waste will exist practically a million years."
So, he says, blast them with a neutron beam, turn them into something else, accelerate their decay: there could even be a power bonus The 2MW beam could provide the source for a subcritical nuclear reactor - subcritical because nobody wants another Chernobyl - that could yield a gigawatt or even two. No machine for transmuting dangerous into safe and consumer into generator yet exists: it would, he says, be quite expensive to build.
To get to Novosibirsk from London you cross six time zones. When it is noon in Imperial College, it is 6pm in Akademgorodok. So the Siberians occupy the future. Who is to say their thinking is in the past?
EducationGuardian.co.uk © Guardian Newspapers Limited 2005
* * *
Согласно опубликованному в журнале Science исследованию ученых из Калифорнийского университета, в результате потепления климата в ближайшие тридцать лет могут исчезнуть многие сибирские озера.
Selon Laurence Smith de l'Université de Californie à Los Angeles et ses collègues, les grands lacs de Sibérie disparaîtraient depuis une trentaine d'années sous l'effet du réchauffement climatique.
Leurs travaux, financés par la NSF et publiés dans la revue Science, reposent sur l'analyse d'images satellites d'un territoire sibérien de 515000 km2, prises entre le début des années 1970 (images du satellite américain LANDSAT-1) et maintenant (scenes du satellite russe RESURS-1).
Entre 1973 et 1998, les chercheurs ont constaté que le nombre de grands lacs d'une superficie supérieure à 40 hectares n'a cessé de diminuer, passant de 10882 à 9712 (soit -11%) malgré des précipitations annuelles en augmentation. Ces 1170 réservoirs d'eau douce ne se sont pas volatilisés ; la plupart d'entre eux ont rétréci et seuls 125 se sont totalement évanouis et ont été recouverts par la végétation.
Les scientifiques associent cette disparition des lacs au réchauffement climatique de la région arctique. En effet, la hausse de température dans ces zones septentrionales a pour conséquence une réduction de la couche de permafrost, ce qui favorise l'infiltration et le drainage de l'eau en sous-sol.
Dans les régions plus au Nord où le pergélisol persiste, le nombre de grands lacs semble au contraire progresser mais cette situation pourrait n'être que transitoire. En effet, le réchauffement provoque un effondrement du permafrost, ce qui crée des dépressions à l'origine des lacs, mais ces derniers seraient, d'après les chercheurs, de toute façon appelés a disparaître avec la hausse globale de température.
© Biosfera
* * *
Искать воду на Луне и место для будущих лунных баз будут с помощью российского прибора, установленного на американском космическом "разведчике", запуск которого намечен на 2008 год. Более ранний образец подобного прибора уже 4 года исследует наличие воды под поверхностью Марса.
Russian scientists plan to send a water detector to the Moon onboard a U.S. space probe scheduled for launch in 2008.
The Russian LEND neutron detector, which will search for water on the Moon, and five United States research instruments are to be sent into orbit around the moon on the Lunar Reconnaissance Orbiter built by the U.S. space agency NASA, Independent Online web agency quoted Igor Mitrofanov, head of the LEND lab at the Space Research Institute of the Russian Academy of Science, as saying.
Water could theoretically exist as concentrations of ice in craters at the earth satellite's poles, which are not irradiated by sunlight, he said.
Ice deposits located at either pole would be the logical site for the eventual construction of a manned lunar station. Energy could be generated using solar panels on sunlit areas of the moon and used to melt ice to produce hydrogen fuel for space ships, Mitrofanov added.
An earlier design of the LEND device has searched for water on Mars for the past four years.
© Copyright 2005 The Moscow Times. All rights reserved.
* * *
Полимеры на органической основе, созданные российскими исследователями, совместимы с живыми тканями и не отторгаются организмом, что позволяет использовать их для создания конструкций и препаратов медицинского назначения. Речь идет о полигидроксиалканоате - пластике, который полностью разлагается в природе, не загрязняя, таким образом, окружающую среду.
Biopolymers obtained by Russian researchers with the help of hydrogen bacteria, are compatible with tissues of the organism and are autodestructive after a while. That makes such biopolymers indispensable for medical articles.
Polymers of microbe origin, or biopolymers, have recently drawn increasing attention of a great variety of specialists. These polymers have two important advantages. Firstly, they get destroyed in the environment and thus solve the contamination problem. Secondly, they are biocompatible, and consequently, they are not rejected by the organism when applied for medical purposes. The Krasnoyarsk and Moscow researchers from the Institute of Biophysics (Siberian Branch, Russian Academy of Sciences) and OAO "Biokhimmash" supported by the International Science and Technology Center are developing technology of biopolymer production and manufacturing of medical articles from them.
These are polymers of oxyderivative fatty acids, the so-called polyhydroxyalkanoates (PHAs). Some microorganism, for example hydrogen bacteria that get vital energy via oxidizing hydrogen, are able to synthesize PHAs. PHAs have a lot of advantages - their physicochemical characteristics, for example, thermoplasticity, is the same as that of polypropylene and polyethylene, and on top of that they possess antioxidant and optical properties and piezoelectric effect. Besides, like any biopolymers, they are compatible with tissues of organism and get destroyed in the environment. That is why they are promising for use in medicine (surgical and disposable materials), pharmacology (prolongation of drug action), food industry (packing and antioxidant materials), agriculture (seed obducers, destructible films).
The researchers tested the polymer production technology first in the laboratory and then in production environment. So far, the scientists can obtain three types of polymers: polyoxybutyrate and its copolymers with oxybutyrate and oxyvalerianate, but in the future the range of goods will increase. Within a week, 1 kilogram of polymer (or up to 50 kilograms per year) can be produced on the installation.
The researchers are mainly interested in PHA utilization for medical articles. They have already produced out of them wound healing films, suture material, covering for vessel prostheses (stents), matrix for bioartificial organs and implantates, membranes, microparticles, etc.
It is interesting to note that various articles need absolutely different rate of polymer biodegradation - suture threads and films should dissolve quickly, but stents and valve prostheses should serve for a long time. How do scientists solve this problem? "The degradation rate depends on the surface type, it can vary if different fillings are used, or it can be accelerated when needed through preliminary gamma irradiation", explains Tatiana Volova.
Biopolymers underwent tests on animals at the Scientific Research Institute of Transplantology and Bioartificial Organs (Ministry of Health of the Russian Federation). Trade mark of biomaterial - ElastoPOBtm - has been registered. Clinical trials have been started. Specialists say that the current demand for polymers for medicine makes 400 thousand tons per year, therefore they consider industrial production of destructible bioplastics economically feasible. Based on the polymer's sale price of 95 rubles per kilogram, they have already calculated polymer's pay-back, return and profitability.
* * *
В Санкт-Петербурге прошла церемония вручения премии "Глобальная энергия". Имена лауреатов были объявлены еще 28 апреля: Жорес Алферов - "За фундаментальные исследования и значительный практический вклад в создание полупроводниковых преобразователей энергии, применяемых в солнечной и электроэнергетике" и Клаус Ридле - "За разработку и создание мощных высокотемпературных газовых турбин для парогазовых энергетических установок".
ST. PETERSBURG, Russia - Russian physicist and Nobel prize winner Zhores Alfyorov and German academic Klaus Riedle, who have won this year's Global Energy Prize, received the Russian award on Friday.
Alfyorov, 2000 Nobel Prize laureate in physics, was awarded for "fundamental research and a significant practical contribution" to the creation of semiconductor converters of the energy applied in the solar and electric power industry.
Riedle, who works for Siemens, was awarded for "development and creation" of powerful high-temperature gas turbines for steam-gas power installations.
"I am overwhelmed by the great honor to receive the prize from the country whose power, energy, science and people I admire," said Riedle.
"Personally I want to endeavor that this award helps to continue efforts for making energy safe and reliable," he said at the ceremony at the Konstantin Palace.
Alfyorov said developments in energy and science are important for the whole world and particularly for the Russian economy.
"The Russian economy should develop not at the expense of selling out its natural resources, but through development of information technologies," Alfyorov said.
The award, established in 2002, was an initiative of Alfyorov and is intended as Russia's answer to the Nobel prizes. It is given for "leading discoveries, developments and inventions in energy and energetics." This year it is worth about $1 million (euro820,000), which will be divided equally by the winners.
The prize criteria are tied loosely to energy-related development, with preference given to work that promotes ecologically clean energy production, boosts energy-conservation mechanisms or makes a breakthrough in research into renewable energy.
Past recipients of the prize include Ian Douglas Smith of the California-based Titan Corp.'s Pulse Sciences Division and Gennady Mesyats of the Russian Academy of Sciences.
Copyright 2005 Newsday Inc.
* * *
21 июня с борта субмарины в Баренцевом море был запущен космический аппарат с солнечным парусом Космос 1, но на расчетную орбиту аппарат не вышел и определить его местонахождение до сих пор не удалось. Вполне возможно, что аппарат вообще не отделился от ракеты-носителя - именно из-за этого сорвалась первая попытка запуска в 2001 году.
Le voilier solaire Cosmos 1 ne s'est pas installé sur l'orbite prévue. Le lancement de ce satellite d'un nouveau genre, propulsé par la lumière, ne semble pas avoir réussi. Ce n'est pas la première tentative. L'objectif du projet c'est de montrer qu'un engin peut faire des voyages intergalactiques grâce à la lumière.
Première astuce de ce projet Cosmos 1: prendre comme rampe de lancement un vieux sous-marin nucléaire russe en train de rouiller en mer de Barents, et le transformer en rampe de lancement. Ce pas de tir occasionnel est forcément plus économique qu'un lancement sur une base comme Kourou, en Guyane, ou Baïkonour, au Kazakhstan.
C'est donc un missile russe, lancé à partir d'un sous-marin en plongée, qui a envoyé dans l'espace ce satellite d'un nouveau genre. Si tout s'était bien passé, Cosmos se serait d'abord installé sur son orbite à 800 kilomètres de la Terre. Puis les voiles solaires de l'engin se seraient déployées, huit triangles de quinze mètres de côté qui auraient ensuite permis à l'engin d'avancer, propulsé par la lumière. Le dépliage des voiles représentait une opération délicate. L'attraction terrestre pouvait déchirer les voiles. Cette opération n'aura certainement pas lieu puisque Cosmos 1, suite à des problèmes de moteur, n'a pas réussi à atteindre l'orbite prévue. "À cause de l'arrêt spontané du moteur du premier étage du missile porteur Volna à la 83ème seconde du vol, l'unique appareil cosmique "voilier solaire" n'a pas atteint son orbite", a indiqué l'agence spatiale russe Roskosmos, opérateur du projet en partenariat avec la Flotte russe du Nord.
Des nouvelles contradictoires
On verra dans les jours à venir ce qu'il adviendra de Cosmos 1 et si le déploiement de ses voiles est envisageable. Pour le moment les inventeurs du projet, la Planetary Society basée à Pasadena, en Californie, estiment que tout n'est pas perdu. Ils indiquent avoir reçu des informations concernant des signaux provenant peut-être de l'engin spatial. Ces signaux ont été captés par des stations d'observation aux Îles Marshall, au Kamtchatka et en République tchàque. Si ces informations se confirmaient, elles signifieraient que Cosmos 1 n'est pas tombé dans le Grand Nord russe et se trouve peut-être sur une orbite différente de celle qui était prévue. "La bonne nouvelle c'est que nous avons des raisons de croire qu'il est encore actif et en orbite", a declaré Bruce Murray, cofondateur de la Société planétaire et responsable du projet. "La mauvaise, c'est que nous ne savons pas où il est".
Ce projet de voilier solaire dans l'espace coûte 4 millions de dollars, il est financé par des fonds privés américains. Le but de ce projet est de montrer qu'un engin peut avancer dans l'espace grâce à la lumière. C'est la seconde tentative de lancement en coopération avec les autorités scientifiques et militaires russes. En juillet 2001, le prototype ne s'était pas séparé du missile porteur et avait été détruit dans les couches denses de l'atmosphere. Cette fois, c'est le moteur du premier étage du missile porteur qui se serait arrêté.
Des fous d'espace
La Société planétaire a été fondée par trois Américains qui, dans les années 70, rêvaient d'aller toucher la comàte de Halley. L'un d'entre eux est un ancien de la Nasa. Un autre, l'astrophysicien Carl Sagan était auteur de science-fiction. À sa mort, sa femme a decidé de continuer à financer le projet Cosmos 1.
Même si la réussite n'est pas au rendez-vous de cette seconde tentative, Cosmos 1 et un magnifique projet de coopération scientifique internationale. Le prototype a été construit à Moscou, par des héritiers de la grande époque de l'industrie spatiale soviétique. Le budget est modeste, le projet rassemble des bricoleurs de génie.
Des travaux scientifiques commencés il y a plusieurs siècles ont demontré que les photons, grains de lumière se déplaçant à 300 000 km/seconde, peuvent, en arrivant sur un objet, lui donner un peu d'énergie. Si cet objet possède des parois réfléchissantes, les photons peuvent le mettre en mouvement. Comme dans l'espace il n'y a aucune résistance ni attraction terrestre, l'action des photons peut être démultipliée sur une étendue miroitante.
Jusqu'à présent, tous les projets de voyage intersideral butaient sur les distances et le temps nécessaire pour les parcourir. Si Cosmos 1 réussit à faire la démonstration qu'on peut voyager très vite dans l'espace et avec une énergie inépuisable, ce serait la révolution des modes de déplacement dans notre galaxie. Mais pour le moment, l'expérience repose sur la fiabilité d'un matériel militaire russe vieillissant et la passion de quelques scientifiques.
* * *
Полезное действие многочисленных антибиотиков перекрывается их высокой токсичностью, поэтому российские специалисты работают над созданием нетоксичных лекарственных форм. Им удалось на порядок снизить токсичность такого антибиотика как гелиомицин.
Outstanding antiviral action of multiple antibiotics remains unclaimed due to high drug toxicity. Russian physicians are trying to get nontoxic drug dosage form and have achieved success as regards to anti-AIDS antibiotic - Heliomycinum. Their effort has been funded by the International Science and Technology Center.
Specialists of the Lomonosov Moscow State Academy of Fine Applied Chemistry and Ivanovsky Scientific Research Institute of Virology (Russian Academy of Medical Sciences) have found the way to reduce by ten times toxicity of anit-AIDS antibiotic Heliomycinum (Resistomycinum). To this end, antibiotic was enclosed into an adipose (lipidic) bubble - liposome.
Utilization of liposomes as a carrier of drugs is increasingly attracts attention of researchers. Liposomes are non-toxic and get fully decomposed in the organism. As lipids' disintegration occurs gradually, the drug enclosed in liposome is also released in small doses, thus allowing to create drugs with durable action and to reduce their toxicity.
Heliomycinum is one of the drugs whose toxicity the researchers are eager to reduce. This antibiotic blocks the action of several specific enzymes of human immunodeficiency virus, therefore, it has been considered a promising antiviral drug for a long time. However, Heliomycinum has not been widely accepted in medicine due to very poor solubility in water and high toxicity. Heliomycinum inclusion into liposomes would improve the drug quality and allow to create its injection form of low toxicity.
To obtain a liposomic drug, the researchers added the Heliomycinum solution in the chloroform and methanol mixture to the lipidic film. Samples were frozen in liquid nitrogen and stirred up at room temperature. The freezing/thawing cycle was repeated for five more times. As a result, antibiotic embedded into the lipidic film. Then, the mixture was forced through the filters with small interstices to separate non-bound Heliomycinum, and the medicinal mixture itself was smashed to small bubbles containing known concentration of antibiotic. The researchers sorted out such lipid composition that up to 97 percent of Heliomycinum is included into liposomes. Having hidden Heliomycinum into liposomes, the researchers succeeded to dissolve it in physiological solution, which is important for pharmaceutical purposes.
The liposome drug toxicity was tried on the culture of embryonic fibroblasts. Heliomycinum in aqueous solution destroyed every single cell already within 24 hours, and toxicity of liposomic form turned out to be ten times lower. Antiviral activity of liposomic Heliomycinum was tried on the culture of fibroblasts which were infected by cytomegalovirus. This human virus does not cause diseases and ideally fits for model experiments. A new drug has turned out to be active against virus, the drug being applied in such concentration that it is non-toxic for cells.
* * *
Специалисты Института клинической иммунологии СО РАМН занимаются разработкой вакцины против онкологических заболеваний. Технология лечения такова: у онкологического больного берут раковые клетки, обрабатывают их по особой технологии и вновь вводят в организм. В результате идет стимуляция иммунитета к данной опухоли, рост злокачественных клеток замедляется или прекращается вовсе.
Researchers in Novosibirsk have announced success in developing a cancer vaccine. Academician V. Kozlov, director of the Clinical Immunology Institute of the Russian Academy of Medical Sciences' Siberian branch, told the AiF popular weekly of the treatment practice. Essentially it looks like this: cancer cells are taken from a patient with cancer and processed according to a special method to be put back in the body.
As a result, the body becomes immune to this kind of cancer tumour, and the growth of malignant cells retards or stops completely. Together with the Traumatology and Orthopedy Research Institute the Novosibirsk researchers have provided treatment to over thirty patients with brain tumour. The results were impressive: the five-year survivability index increased two times.
Other viruses targeted
Now, scientists are applying this method against the herpes virus and viral hepatitis. They have even undertaken treating skin melanoma and rectal cancer.
Several dozen cases having such diagnoses have been treated in Novosibirsk. The patients have been under medical supervision for three years. All of them are alive.
Elsewhere, Russian scientists are offering breakthrough know-how for early detection of renal syndrome haemorrhagic fever. The discovery comes from the federal government company Immunopreparat, in collaboration with the Bashkir Academy of Sciences.
The company is based in Ufa, capital of Bashkortostan, constituent republic of the Russian Federation, in the Volga region.
The new system is the world's first to diagnose the disease a mere six to eight days after contagion, thus spectacularly reducing haemorrhagic fever mortality rates and preventing complications, Marcel Tuigunov, Immunopreparat vice-manager for research, said.
It took the group more than fifteen years to complete the system, which presently has no equal in Russia or elsewhere.
The diagnostic test is now under four-month clinical tests at Moscow's Research Institute for Medical Biological Preparation Standardisation and Control.
If the tests prove successful, Immunopreparat will start mass production.
Copyright 2005, The Printers (Mysore) Private Ltd.
* * *
Работы на самом длинном нефтяном трубопроводе мира, соединяющем Сибирь с Японским морем, приостановлены из-за протестов ученых, которые считают, что он может причинить большой экологический ущерб. Трубопровод прокладывается рядом с озером Байкал, самым древним и глубоким озером мира. Нефтяной терминал может также представлять угрозу для единственного в России морского заповедника и старейшего заповедника, где обитают последние оставшиеся в мире 30-35 диких амурских леопардов.
WORK on the world's longest oil pipeline has been suspended after scientists protested that it would cause severe ecological damage.
The 2,617-mile (4,200km) pipeline from Siberia to the Sea of Japan was hailed by the Russian Government as the nation's biggest infrastructure project and one that would revitalise the country's far East and make it one of the biggest oil suppliers to China and Japan.
But the project is now mired in controversy after the Russian environmental watchdog ordered a halt to work under way within a mile of Lake Baikal, the world's oldest and deepest lake and a Unesco World Heritage Site.
Oleg Mitvol, deputy head of the Natural Resources Ministry's Environmental Oversight Agency, said: "We have environmental legislation and we will demand that it is obeyed. There should be a pipeline but it should not spoil the world heritage of Lake Baikal."
The Ministry also said that a planned oil terminal could threaten Russia's only marine reserve and its oldest nature reserve, which is home to the Amur leopard, arguably the world's rarest big cat.
The official protests are a rare victory for environmental groups that have been campaigning for Transneft, the state pipeline monopoly, to change the planned route.
Roman Vazhenkov, of Greenpeace Russia, said: "However ignorant Transneft is of public opinion, Russia doesn't want an international scandal." Transneft could ignore the protests, but might then have trouble raising loans.
In December the Government approved the plan to build a pipeline from Tayshet, in western Siberia, to Perevoznaya Bay, by the Sea of Japan, to service Asian markets during the next decade.
Construction was due to start this summer and the first section, from Taishet to Skovorodino, near the Chinese border, was to be ready by 2008.
The first controversy was over the decision to build an oil terminal at Perevoznaya, a pristine bay, rather than expanding the terminal at the nearby port of Nakhodka, as planned.
Environmentalists say a new terminal would threaten a Unesco Biosphere Reserve, which is home to the world's last 30-35 wild Amur leopards.
Sarah Christie, carnivore programme manager at the Zoological Society of London, said that the noise, the roads and the influx of people "could be the last straw for the leopard".
Perevoznaya is also next to Russia's only marine reserve, and the Russian Academy of Science estimates that the risk of a tanker accident is 17 times higher there than at Nakhodka.
Sergei Bereznuk, of the Phoenix Fund environmental body, said: "Transneft says Perevoznaya is the best option, but no one knows how it decided that. Journalists are afraid to air our views."
Critics say that Sergei Darkin, governor of the far eastern Primorye region, had the route changed because he had financial interest in Perevoznaya. He denied that and said a final decision on the route had not been made. "All I can tell you is that the pipeline will be built . . . and will bring huge economic benefit," he said.
The second scandal broke when it was found this year that Transneft had started clearing trees along a 500-mile stretch of land that came within a mile of Lake Baikal. Mr Mitvol has demanded that a criminal case be opened. Sergei Grigoriev, the vice- president of Transneft, denied any wrongdoing and said that a contractor was simply doing a feasibility study. "If they've done anything wrong, they will be responsible for it," he said. "We are doing everything according to Russian law."
Copyright 2005 Times Newspapers Ltd.
* * *
Вируса оспы в природе больше не существует, он уничтожен. Необходимо также уничтожить лабораторные образцы вируса, но при этом их генетический материал должен быть сохранен. Решение этой задачи в России финансирует Международный центр науки и технологии.
Physicians have won the victory over the natural variola virus: it does not exist in nature any longer. Now, it is also necessary to destroy the viruses kept in the laboratory, however, their genetic material should be preserved. Resolution of this task in Russia is funded by the International Science and Technology Center (ISTC).
Specialists of the State Research Center of Virology and Biotechnology "Vector" (Ministry of Health of the Russian Federation) supported by the International Science and Technology Center (ISTC) disassembled into fragments complete genomes of 8 cultures of natural variola viruses. In such a form, virus' genome can be kept for a very long time and used for research work without fear that the virus itself will get into disposal of terrorists or will "escape" the laboratory as a result of an accident.
Large-scale actions undertaken by the world community under the aegis of the World Health Organization allowed to fully eliminate natural variola. At present, natural variola viruses are preserved only in collections of two collaborative research centers: in the Center for Disease Control and Prevention (CDC) (Atlanta, USA) and in the State Research Center of Virology and Biotechnology "Vector". Since 1980, immunization of population against natural variola virus was ceased in all countries, and the amount of people sensitive to this disease is constantly growing. Repositories of viable cultures of the virus are a source of possible biological hazard. Therefore, World Health Organization decided in 1986 that it was necessary to destroy all collections of natural variola virus' cultures and their DNAs. Extermination is inevitable, but it will be a great loss for virology and medicine. Firstly, functioning and organization of this virus have not been studied in detail, secondly, although nobody falls ill with natural variola now, specialists should have the opportunity to develop contemporary express-diagnostics methods. To continue the research, the Russian scientists had to develop a safe way for preservation of genetic material of this virus.
The preservation problem was solved with the help of the polymerase chain reaction method. This technology allows to get copies of sufficiently expanded DNA fragments which make approximately one fifth of natural variola virus' genome. However, such fragments can be destroyed in the course of long storage and, no matter how numerous they are, will sooner or later come to the end, and there will be no source to get new ones. Therefore, all fragments were embedded into vectorial molecules, which can be maintained and reproduced in the cells of Escherichia coli. The Novosibirsk virologists have transferred into such fragmentary collection genomes of 8 cultures of natural variola virus collected in various locations of the globe and belonging to two epidemiological types (variola major and variola minor alastrium). The museum created in such a way is a representative, safe and long-term repository of virus' genetic information. Each construction represented in the collection is assigned its personal number and provided with a passport - description. At present, the museum is used as a basis for studying structure functional organization of individual genes, areas and the entire genome of natural variola virus. Genetic material stored in the museum is applied to create contemporary species-specific diagnostics methods, such as hybridization on microchips.
© AlphaGalileo Foundation 2003
* * *
|
предыдущий месяц |
1998-2005 |
следующий месяц |
|
|