 Январь 2025 |
Российская наука и мир (по материалам зарубежной электронной прессы) |
январь |
февраль |
март |
апрель |
май |
июнь |
июль |
август |
сентябрь |
октябрь |
ноябрь |
декабрь |
Futura Sciences / le 1 janvier 2025
Le prix « ВЫЗОВ » russe, le prix Nobel du XXIe siècle ?
|
9 декабря были объявлены лауреаты Национальной премии «Вызов», учрежденной в 2023 г. и присуждаемой за открытия и разработки, способные повлиять на жизнь людей в ближайшие десять лет. В этот раз к четырем российским номинациям прибавилась одна международная:
• Инженерное решение. Сергей Таскаев (Институт ядерной физики СО РАН) - за разработку компактного ускорительного источника нейтронов, пригодного для широкого круга исследований, в том числе для нейтронозахватной терапии.
• Перспектива. Леонид Ферштат (Институт органической химии им. Н.Д.Зелинского РАН) - за передовые исследования в области создания органических функциональных материалов многоцелевого назначения на основе высокоазотных молекулярных архитектур.
• Прорыв. Евгений Антипов (МГУ им. М.В.Ломоносова) и Артем Абакумов (Сколтех) - за создание фундаментальных и практических основ разработки и производства электродных материалов для металл-ионных аккумуляторов нового поколения.
• Ученый года. Валерий Тучин (Институт проблем точной механики и управления РАН) - за выдающийся вклад в области наук о жизни, а также в новую междисциплинарную область знаний и технологий - биофотонику.
• Discovery/Открытие. Никос Логотетис (Международный центр исследований мозга приматов ICPBR) - за основополагающий вклад в создание метода функциональной магнитно-резонансной томографии и введение его в повседневную научную и клиническую практику для исследования активности мозга человека.
Les scientifiques et les artistes étaient particulièrement mis en avant dans la Russie de l’ère soviétique. C’est sans doute (au moins en partie) pour reprendre cette tradition qu’une fondation privée a lancé en 2023 un nouveau prix scientifique et technologique dont on peut penser, à première vue, qu’il renouvelle pour le XXIe siècle le concept du prix Nobel. Parmi les membres du conseil chargés d’attribuer ce nouveau prix, on trouve Artem Oganov, dont le nom est certainement familier des lecteurs de Futura depuis un moment. Les lauréats de l'année 2024 ont été révélés ce 9 décembre.
L'année dernière, dans un précédent article dont nous reprenons en partie le contenu ci-dessous, Futura vous avait fait faire connaissance avec le prix « ВЫЗОВ » qui, rapidement, de réservé aux Russes, allait finalement s'ouvrir à l'internationale l'année suivante. Les lauréats potentiels dans le monde pouvaient candidater à titre personnel ou être proposés par leurs collègues jusqu'au 20 mai 2024. La partie de ce prix qui est donc accessible à tous les chercheurs de la noosphère est dans la catégorie « Découverte » avec les commentaires suivants sur le site de la fondation Vyzov.
Le prix est décerné :
• pour les scientifiques étrangers (et/ou les citoyens de la Fédération de Russie qui ne résident pas dans la Fédération de Russie) et les équipes scientifiques (composées de trois personnes au maximum), adultes et sans restriction d'âge ;
• pour une découverte scientifique significative (présentée, par exemple, sous la forme d'un article scientifique ou d'une série d'articles scientifiques) qui a influencé le développement de la science et de la technologie et dans laquelle un lien peut être établi avec la possibilité de créer une technologie future - l'horizon de mise en œuvre possible des technologies futures est de 3 à 10 ans ;
• pour les découvertes scientifiques faites à l'étranger qui contribuent au développement de la science mondiale.
Les lauréats du prix 2024 ont finalement été révélés ce 9 décembre. Chacun des quatre lauréats russes et un lauréat international recevront 11 millions de roubles (environ 112 000 dollars).
Rappelons que, depuis plus d'une décennie, Futura suit régulièrement les travaux du physicien, chimiste et cristallographe russe Artem Oganov, dont certains pensent qu'il ne serait pas surprenant qu'on finisse par lui attribuer un prix Nobel. Pur produit de la prestigieuse université d'État Lomonossov de Moscou, c'est aussi un représentant de la tout aussi prestigieuse école de physique de la matière condensée russe, qui s'est illustrée avec des prix Nobel de physique tels Lev Landau ou Andre Geim et Konstantin Novoselov. Il a été professeur et chercheur dans plusieurs institutions mondiales, de l'University College de Londres à l'École polytechnique fédérale de Zurich.
Depuis 2023, comme il l'a indiqué à Futura, il est le président du comité scientifique chargé de choisir les lauréats d'un nouveau prix scientifique russe. Comme nous l'avons écrit, la première année, celui-ci était réservé à la sphère nationale, mais il avait vocation à devenir international, ce qui est le cas désormais. Il s'agit du prix du « Challenge » ou encore du « Défi », c'est-à-dire en russe le prix « ВЫЗОВ ».
Il est doté d'un manifeste bien dans l'esprit de la science de l'ère soviétique, dont on connaît les performances impressionnantes.
Cette année :
• Dans la catégorie « Solution d'un problème d'ingénierie », le prix est décerné à Sergey Taskaev (Institut de physique nucléaire, Novossibirsk) pour le développement d'une source de neutrons compacte à haute intensité qui permet une large gamme d'expériences scientifiques et fait progresser considérablement la thérapie par capture de neutrons.
• Dans la catégorie « Percée » (pour la résolution d'un problème scientifique ou technologique majeur), le prix est décerné aux travaux d'Evgeny Antipov (Université d'État de Moscou) en collaboration avec Artem Abakumov (Skoltech, Moscou), pour leurs recherches fondamentales et appliquées sur les matériaux pour les batteries métal-ion de nouvelle génération. Leurs travaux révolutionnaires ont conduit au développement des technologies russes de batteries lithium-ion et sodium-ion.
• Dans la catégorie « Scientifique de l'année », le prix est décerné à Valery Tuchin (Université d'État de Saratov) pour ses contributions importantes à la biophotonique, notamment l'invention de la clarification optique des tissus, une méthodologie permettant de rendre les tissus et les organes optiquement transparents. Ses recherches pionnières sur l'interaction des rayonnements optiques et térahertz avec les tissus biologiques ont ouvert la voie à des avancées innovantes dans le domaine du diagnostic médical et de la thérapie au laser.
• Dans la catégorie « Promesse » (réservée à des scientifiques de moins de 35 ans), le prix est décerné à Leonid Fershtat, 33 ans (Institut de chimie organique, Moscou) pour le développement de matériaux fonctionnels organiques polyvalents basés sur des architectures moléculaires à haute teneur en azote. Les applications comprennent les médicaments et les matériaux énergétiques.
• Le prix international dans la catégorie « Découverte » est décerné à Nikos K. Logothetis (Centre international de recherche sur le cerveau des primates, Shanghai, Chine) pour sa contribution fondamentale au développement de l'imagerie par résonance magnétique fonctionnelle (IRMf) et à son application pour comprendre la perception et la reconnaissance des objets. Aujourd'hui, l'IRMf est largement utilisée dans la recherche et la pratique clinique.
Une tradition de prix scientifiques russes
Il existait déjà des prix internationaux russes en science comme le prix Pomerantchouk en physique théorique, décerné annuellement depuis 1998 par l'Institut de physique théorique et expérimentale à Moscou en mémoire d'Isaac Pomerantchouk, qui avait fondé le département de physique théorique de l'Institut avec Lev Landau. Roger Penrose et Freeman Dyson en ont été lauréats, pour ne citer qu'eux.
Il y a également le prix Bogolioubov pour les jeunes scientifiques, à la mémoire du physicien théoricien et mathématicien Nikolaï Bogolioubov, formé jadis à l'Université de Kiev et dont les travaux sur la théorie quantique des champs ont été utilisés par Steven Hawking pour découvrir le rayonnement des trous noirs, prix qui a été attribué à Aurélien Barrau.
À y regarder de près, le prix « ВЫЗОВ » (phonétiquement en russe, cela se lit « vizof ») apparaît comme une forme complètement modernisée du prix Nobel en science, ou pour le moins un cousin de ce prix qu'il ne remplace pas étant donné ses différences. Il avait été officiellement attribué le 19 décembre 2023 à quatre lauréats dans quatre catégories différentes.
L'objectif de ce prix est de mettre en lumière des découvertes fondamentales et des innovations technologiques susceptibles de changer le paysage scientifique et technologique à court terme. Il concerne donc plus précisément les percées, idées et inventions fondamentales qui changent le paysage de la science moderne, et la vie de chaque personne. Il s'agit de découvertes faites récemment ou de travaux qui devraient déboucher sur des découvertes et des applications d'ici trois à dix ans environ.
Un prix Nobel modernisé à vocation internationale ?
Le prix « ВЫЗОВ » aura donc tendance à récompenser des chercheurs jeunes et tout de suite après leurs découvertes, alors que le prix Nobel est plus souvent attribué à des chercheurs ayant atteint au moins la cinquantaine, voire presque ou déjà à la retraite, ceux-ci ont plus d'une fois expliqué que le prix Nobel leur aurait été bien plus utile dans leur jeunesse, juste au moment où ils développaient leurs travaux et qu'ils auraient eu besoin de fonds pour en mener d'autres d'importance.
Le prix a une autre particularité : les candidatures peuvent être faites directement par ceux qui se considèrent comme des lauréats potentiels, en plus de la nomination traditionnelle par des collègues ou par des organisations. Enfin, il est plus souple que le prix Nobel qui tend à se cantonner à des disciplines précises ; le nouveau prix pourra récompenser des développements franchement interdisciplinaires et des solutions de pure ingénierie. En bref, si l'intersection avec les Nobel classiques n'est pas nulle, il ne s'agit pas non plus de copies.
Si, comme on l'a dit, ce prix était interne à la Russie, dès 2024 il devait s'étendre comme l'avait expliqué Artem Oganov en 2023 dans une interview : « Une nomination internationale sera ajoutée l'année prochaine. Nous ne regardons pas la citoyenneté, les opinions politiques, la nationalité, le sexe, etc. Le prix est décerné uniquement pour des résultats scientifiques. ».
Rappelons que, même pendant la période stalinienne ou pendant la guerre froide, les communautés scientifiques de l'ouest et de l'est entretenaient des communications. Très ami avec l'impressionnant prix Nobel Igor Tamm, le tout aussi impressionnant Paul Dirac, l'un des fondateurs de la mécanique quantique, voyageait fréquemment en Russie pendant les années 1930 et également après-guerre tout en communiquant aussi avec Piotr Kapitza et Vladimir Fock. Plus récemment, au cours des années 1970 et 1980, on peut citer également le prix Nobel Kip Thorne qui visitait fréquemment le groupe d'astrophysique et de cosmologie relativiste de Yakov Zeldovitch à Moscou.
Du cerveau à l'information quantique en passant par la lumière et la supraconductivité
Pour 2023 ont été sélectionnés des scientifiques qui ont réalisé des progrès significatifs dans la pharmacologie des maladies cérébrales, la photonique et les nouvelles plateformes informatiques, les ordinateurs quantiques et le développement de nouveaux dispositifs scientifiques.
© 2001-2024 Futura-sciences. Tous droits réservés
* * *
Nuclear Engineering International / January 2, 2025
Rosatom creates terbium-161 production technology
|
Ученые Института реакторных материалов разработали технологию производства медицинского изотопа тербия-161, используемого при лечении многих видов рака. Ранее в России этот радиофармпрепарат не выпускался.
Scientists at Russia’s Research Institute of Nuclear Materials (INM JSC) have developed a technology for the production of beta emitting terbium-161 isotope used in the treatment of cancer.
The plan is to start the production of a wide range of new-generation radiopharmaceuticals based on the radionuclide. Located in Zarechny, Sverdlovsk Oblast, INM JSC is part of the Rosatom scientific division. INM has provided a pilot batch of the new product to the A.M.Granov Russian Scientific Center for Radiology and Surgical Technologies of the Russian Ministry of Health for testing purposes.
Researchers are currently investigating the potential uses of this isotope. Its distinctive physical and chemical properties, as well as its wide radiation spectrum suggest a possibility of developing a variety of radiopharmaceuticals for treating various types of tumour and other conditions that require high precision radiotherapy. Russia did not produce this radiopharmaceutical previously.
Terbium-161 production begins with gadolinium-160 produced by another Rosatom subsidiary, Elektrokhimpribor. The base material is expected to allow the state-owned company to develop a reliable and effective production chain for the Terbium-161 isotope. INM carries out reactor testing and post-reactor research for the nuclear industry using equipment including the IVV-2M research reactor for isotope production.
"Preclinical studies have shown that the dose of terbium-161 is, on average, 1.5 times higher than that of similar pharmaceuticals. This allows for a reduction in the amount of radiopharmaceutical administered compared to those based on lutetium as well as for reduced patient exposure and irradiation of healthy organs and tissues," said Andrey Stanzhevsky, Dr. habil. med., Associate Professor, Deputy Research Director at the A.M.Granov Center.
© Business Trade Media International Limited. All Rights Reserved 2025.
* * *
Ars Technica / Jan. 2 2025
Russia just launched the 2,000th Semyorka rocket - it’s both a triumph and tragedy The R-7 family of rockets originated from an ICBM developed to carry nuclear weapons.
|
25 декабря 2024 г. с космодрома Байконур был совершен 2000-й запуск ракеты семейства Р-7 - ракеты-носителя «Союз-2.1б» со спутником дистанционного зондирования Земли. Первый пуск состоялся в мае 1957 г. В том же году модифицированная версия сконструированной Сергеем Королевым ракеты вывела на орбиту первый спутник, а еще через 4 года - доставила в космос Юрия Гагарина.
The Russian space program reached a significant milestone over the holidays with the 2,000th launch of a rocket from the "R-7" family of boosters. The launch took place on Christmas Day when an R-7 rocket lifted off, carrying a remote-sensing satellite from the Baikonur Cosmodrome.
This family of rockets has an incredible heritage dating back nearly six decades. The first R-7 vehicle was designed by the legendary Soviet rocket scientist Sergei Korolev. It flew in 1957 and was the world's first intercontinental ballistic missile. Because the first Soviet nuclear warheads were massive, the R-7 vehicle was powerful enough to be converted into an orbital rocket.
A modified version of the R-7 rocket, therefore, launched the Sputnik satellite later in 1957. And the slightly more powerful "Vostok" version of the booster carried Yuri Gagarin into space in 1961, opening the era of human spaceflight. The first Soyuz variant, a rocket that has been upgraded multiple times but remains similar to its original form, flew in 1966. Humans still fly on the Soyuz rocket today to the International Space Station.
Reaching a major milestone
In a news release published via Russian channels, Roscosmos noted that the Christmas Day launch was the 2,000th launch of the R-7, or Semyorka family of vehicles. The "Semyorka" moniker for these rockets is the noun form of the number 7 and the affectionate name for the booster, according to translator Rob Mitchell.
The most commonly flown variant of the Semyorka rocket is the Soyuz-U variant, which flew 788 missions from 1973 to 2017 (including human flights to a variety of space stations). This is followed by the Voskhod booster (299 flights, primarily for reconnaissance satellites) and Molniya-M rocket (280 flights, including polar and lunar missions).
The R-7 rocket family has taken flight from four different launch pads around the world, including a couple of dozen missions managed by the European Space Agency under an agreement from 2011 to 2022, which ended after Russia's invasion of Ukraine.
• Baikonur Cosmodrome, Kazakhstan: 955 launches from May 1957 to the present day
• Plesetsk Cosmodrome, Russia: 1,000 Launches from December 1965 to the present day
• European launch site, French Guiana: 27 launches from October 2011 to October 2022
• Vostochny Cosmodrome, Russia: 18 Launches from April 2016 to the present day
A blessing - and a curse
It's remarkable, of course, that Russia has flown the basic core of a rocket for 58 years. And this total of 2,000 launches is unlikely to be matched any time soon. China's family of Long March rockets, which have had far more variability in design than Russia's Semyorka boosters, is approaching 500 total launches. SpaceX Falcon 9 rocket has now launched more than 400 times. However, the company will probably phase out this workhorse booster within the next decade or so as the Starship vehicle takes over.
In fact, the Starship booster is probably the only rocket currently in operation or under consideration that has a chance of breaking the Semyorka record. This may seem preposterous for a booster that has flown just six times, but Starship is designed for full and rapid reusability, and the booster will need a high flight rate to accomplish SpaceX's goal of lunar and Mars missions. It seems possible that Starship could approach the Semyorka record by around 2040.
Although it's certainly worth commemorating the 2,000th launch of the R-7 family of rockets, the fleet's longevity also offers a cautionary tale. In many respects, the Russian space program continues to coast on the legacy of Korolev and the Soviet space feats of the 1950s and 1960s. That Russia has not developed a more cost-competitive and efficient booster in nearly six decades reveals the truth about its space program: It lacks innovation at a time when the rest of the space industry is rapidly sprinting toward reusability.
© 2025 Condé Nast. All rights reserved.
* * *
Prensa Latina / January 13, 2025
Cuba and Russia strengthen collaboration for scientific research
|
Институт молекулярной биологии им. В.А.Энгельгардта РАН и Кубинский иммунологический центр заключили соглашение о сотрудничестве в области научных исследований.
The Cuban Immunoassay Center signed an agreement for Cooperation in Scientific Research with the Engelhardt Institute of Molecular Biology (EIMB) of the Russian Academy of Sciences (RAS), it was announced.
According to several publications in the official profile of the Cuban institution in X, the agreement is focused on obtaining products that are priorities for medical, sanitary and public health care in both countries.
In this regard, the president of BioCubaFarma, Mayda Mauri, commented that the consolidation of these agreements is the expansion of the internationalization of research and development activity, which constitutes a priority of attention for this entity in terms of science and innovation in 2025.
The Immunoessay Center is a High Technology company that researches, develops, produces and markets products and technologies for in vitro diagnostics, equipment and accessories for medical care and research into hereditary-metabolic, transmissible and chronic non-transmissible diseases.
Another line of work includes technical assistance to the laboratories and training the staff who employ them in Cuba and around the world.
SUMA technology stands out among the products of this company and is a fundamental technological support of important national health programs such as the Maternal-Child for prenatal care and control of mother-to-fetus transmission of pathologies such as HIV and hepatitis B, as well as in the discovery of congenital malformations.
© 2016-2021 Prensa Latina.
* * *
ScienceX / January 17th, 2025
Institute of Geology and Petroleum Technologies presents new unit for pelletizing of gas hydrates
|
Специалисты Казанского университета, Института неорганической химии СО РАН и Российского государственного университета нефти и газа создали первую в России установку для быстрой добычи и прессования газовых гидратов. Это позволит хранить и транспортировать гидраты в удобной и стабильной форме.
Experts from Kazan University, together with colleagues from the Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences and the Russian State University of Oil and Gas, have created the first installation in Russia for the rapid production and pressing of gas hydrates. Its use will make it possible to obtain and test pellets, which can become a commercial form of solid gas technology for its storage and transportation. Details of the development and results of laboratory studies were published in Chemistry and Technology of Fuels and Oils.
"We have been working on creating this installation for three years. We analyzed global experience, experimented with various methods for accelerating hydrate production, and came to a solution that we implemented in practice. Thanks to this equipment, we have managed to significantly speed up the process of obtaining hydrate in static conditions," says Matvey Semenov, Lead Researcher at the Laboratory of Hydrate Technologies of Utilization and Storage of Greenhouse Gases and Senior Researcher at the Laboratory of Enhanced Oil Recovery.
Before developing the new installation, scientists obtained gas hydrates in laboratory conditions in the form of powder, which is difficult to store and transport, since it can quickly decompose and release gas back.
"Our task was to determine in what form to obtain, store and transport hydrates of natural and associated petroleum gas. These are very important issues for further pilot industrial implementation of the technology. We proposed and implemented in practice a method based on the formation of cylindrical pellets. It is based on the phenomenon of self-preservation, which means that the resulting hydrate remains stable under milder conditions. Consequently, the requirements for equipment are reduced and the entire process flow is simplified. We plan to continue optimizing the pelletizing process with regard to temperature, pressure and other operating parameters at our facility," adds Chair of the Department of Petroleum Engineering Mikhail Varfolomeev.
One device combines two technological processes: the formation of hydrates and the production of pellets; the latter are convenient for storage and transportation. To do this, gas is fed into a reactor filled with an aqueous solution with special substances that accelerate the formation of hydrates. Then they are pressed by a mechanism that resembles a piston and moves with the help of a hydraulic pump.
The very idea of compressing hydrates in laboratory conditions is not new to the scientific world. However, previously created analogs assembled in other countries are not speedy enough, and their hardware design is complex. This technology has been modernized at Kazan Federal University. Now the Russian facility significantly simplifies the design and reduces the time required to obtain a hydrate.
"Preliminary results have been obtained on methane hydrate formation using special substances that we developed in our laboratory. The operability of the installation has been tested and it has been proven that the process of obtaining hydrate can be accelerated. In addition, we managed to select conditions for obtaining a tightly pressed sample. Now we are actively studying how stable these samples are at atmospheric pressure and at negative storage temperatures," notes Dr. Semenov.
Relevant research continues at the Center for Liquid Hydrocarbons.
© Science X™ 2004-2025.
* * *
Xinhua / 2025-01-23
Russian scientists observe mysterious black plasma cloud on sun
|
Российские астрономы (ИКИ РАН) сообщили о редком явлении - выбросе черной плазмы на Солнце. По мнению ученых, черный цвет объясняется наличием нейтрального водорода, способного почти полностью поглощать коротковолновое солнечное излучение.
Russian scientists reported a rare phenomenon involving a black emission of plasma observed on the Sun, the Laboratory of Solar Astronomy at the Space Research Institute of the Russian Academy of Sciences announced on its website on Wednesday.
"A very rare, beautiful and even slightly eerie phenomenon occurred today on our star. Right in the center of the visible disk, a ghostly structure of a distinctly black color formed, and then was partially ejected into space, and partially dissipated in the corona," it said.
According to scientists, the black color is typically caused by neutral hydrogen, which has the ability to almost completely absorb incoming radiation with short wavelengths from behind.
"The eruption released and scattered a cold prominence rich in neutral hydrogen throughout the corona. Eventually, the prominence material was entirely destroyed and disappeared. However, for about three hours, the coronal plasma cloud remained visible, moving along magnetic lines before dissipating," it explained.
Copyright © 2000-2025XINHUANET.com All rights reserved.
* * *
Science / 29 Jan 2025
Banished from world’s biggest physics lab, Russian scientists look inward - and to China Breakdown of collaboration with CERN forcing many physicists to reorient work.
|
После разрыва сотрудничества с ЦЕРН многим российским физикам пришлось переориентировать свою работу. Некоторые переключились на внутренние проекты, некоторые - на взаимодействие с Китаем, планирующим строить собственный коллайдер.
In the dead of the Russian winter, many of the nation’s physicists are feeling a particular chill. Banished since late last year from Europe’s CERN, the world’s largest particle physics laboratory, and increasingly isolated by trade sanctions that have complicated purchases of scientific equipment, many Russian physicists are having to dramatically reorient their work - with some looking to China for collaboration.
Some scientists have found ways to sustain their connections to CERN and other institutions in Europe and the United States. But they have faced pressure from Russian officials to sever ties.
The breakdown in collaborations, catalyzed by Russia’s full-scale invasion of Ukraine in 2022, is producing "obvious losses" for all sides, says Alla Skovorodina, a spokesperson for the Budker Institute of Nuclear Physics (BINP), a leading Russian research center. Researchers from the institute had worked with CERN for decades, she notes, a collaboration that "has always been mutually beneficial." Russian scientists played a significant role, for example, in building and operating the Compact Muon Solenoid, one of two key particle detectors fed by the world’s largest atom smasher, CERN’s Large Hadron Collider (LHC), which discovered the Higgs boson.
But several hundred Russian scientists were forced to end their work at CERN on 30 November 2024, after the laboratory terminated its partnership agreements with institutes operated by the governments of Russia and Belarus, Russia’s close ally. At least 90 Russian researchers sidestepped the ban by reaffiliating with institutes in other nations, according to a CERN spokesperson. The ban also did not apply to scientists affiliated with the Joint Institute for Nuclear Research (JINR) near Moscow, which is operated by a coalition of more than a dozen nations and has its own agreement with CERN.
More Russian researchers might have attempted to reaffiliate if not for opposition from prominent Russian officials, says Andrey Seryakov, a Russian physicist who in recent years had spent up to 3 months a year at CERN. For example, when researchers attempted to establish a new organization, based outside Russia, that would have enabled Russian scientists to continue working at CERN, they faced fierce criticism from physicist Mikhail Kovalchuk, president of the Kurchatov Institute nuclear energy research center, who is known for his ties to Russian President Vladimir Putin. "Given that most Russian scientists working at CERN have their main place of work in Russian universities and research centers, most of them were forced to refuse to cooperate," Seryakov says.
Other Russian physicists who have lost access to CERN say they will turn to domestic projects, such as the Nuclotron-based Ion Collider Facility under construction at JINR, which will create fleeting puffs of fundamental particles called a quark-gluon plasma, and a pair of small electron-positron colliders at BINP. The larger of the two produces a particle called the tau lepton, a fleeting heavier cousin of the electron. The smaller, just 24 meters in circumference, has pioneered a new technique to produce round particle beams, which are more compact and stable than the usual flat, ribbonlike ones. That should enable a collider to run longer before refilling the beams. "These are worthy projects, although they are not as advanced as the LHC," says physicist Fedor Ratnikov of the Laboratory of Methods for Big Data Analysis at the National Research University Higher School of Economics in Moscow.
At BINP, another "promising direction is China," Skovorodina says. China has ambitious plans for a next-generation collider that could surpass the LHC in energy, she notes, "and our institute plans to participate."
In the meantime, Russian physicists continue to struggle with trade sanctions that have made it difficult to obtain electronics and other high-tech gear from the U.S. and Europe, and ongoing pressure from Ukraine and its allies to expel Russia from other collaborations. For example, a BINP researcher says Russian contributions to a nuclear physics experiment called PANDA at the Facility for Antiproton and Ion Research, a large accelerator project currently under construction in Germany, have been largely frozen.
Such ruptures trouble Anatoli Romaniouk, a Russian physicist who has worked at CERN since 1990 and was not directly affected by the ban. "Science is a bridge that allows people to communicate and exchange both intellectual and moral products," he says, adding that he will try to maintain some communication with colleagues in Russia, in part because he thinks it is important to "give young scientists the opportunity to participate and develop in the global scientific community." But he’s not optimistic that U.S. and European institutions will become more welcoming to Russia anytime soon. "I do not foresee any significant changes in attitudes towards Russian scientists in the next decade," he says. "And perhaps longer."
© 2025 American Association for the Advancement of Science. All rights reserved.
* * *
Nuclear Engineering International / January 29, 2025
Russia develops 3D printing for fusion reactor components
|
Ученые из НИТУ «МИСИС» и НИИ электрофизической аппаратуры имени Д.В.Ефремова разработали технологию 3D-печати обращенных к плазме компонентов термоядерных реакторов. Композит из вольфрама и меди объединяет преимущества обоих металлов.
Russian scientists have developed a new technology for the production of materials for creating elements of thermonuclear reactors, specifically components facing plasma in fusion power plants. With the help of 3D printing, specialists developed a composite of copper and tungsten, which combined the advantages of both metals. According to experts, the search for suitable materials is one of the most pressing issues in the development of thermonuclear plants, and their solution brings closer the era of thermonuclear energy.
Specialists from the National University of Science & Technology NITU MISiS (formerly Moscow Institute of Steel & Alloys) together with colleagues from the DV Efremov Institute of Electrophysical Apparatus, have proposed a new methodology for the production of materials for components facing plasma in thermonuclear reactors.
These are subjected to high temperature and exposure to hydrogen isotopes and special properties are required to withstand these. Hybrid technology, in additive production (3D printing) is combined with classic approaches, makes it possible to obtain a bimetallic composite from tungsten and copper with improved characteristics. It far exceeds the capabilities of currently used analogues.
"Research and development of new methods for the manufacture of tungsten parts is of high practical value," said Stanislav Chernyshikhin, head of the laboratory for catalysis and processing of hydrocarbons at NITU MISiS. "The technology of selective laser melting (3D metal printing) is one of the most popular and applied methods for the additive production of metal products due to the possibility of synthesising complex parts with high resolution. The production of tungsten products using this method is a difficult task due to the high melting point and the formation of non-melting defects, microcracks and overheating of various components."
Tungsten is considered one of the main materials for plasma-facing components due to its high melting point and other important characteristics. However, it is difficult to mechanically process due to its extreme hardness and fragility. To make a part of tungsten, classical powder metallurgy methods are usually used, but they do not allow the creation of complex products. Therefore, the traditional design of these elements is a simple multilayer design. Additive production makes it possible to synthesise the product in layers, including with a given porous structure, MISiS noted. The properties of such components can be adapted for a specific task by changing their geometric structure, experts explained.
The NITU MISiS team was able to obtain a relative density of continuous samples of 96.7% using laser synthesis. First, tungsten porous structures were made to create the composite by selective laser melting. Then copper was added to the matrix at temperatures up to 1,350 ° C. Having studied the wetting and kinetics of impregnation of tungsten matrices with copper, scientists established optimal conditions for this operation.
Pure tungsten is a fragile metal subject to minor deformations and cracks. However, mechanical tests showed that the resulting composite turned out to be much more plastic. "In the future, we plan to switch to the production of mock-ups of components facing plasma and heat-loaded cyclic tests. During the tests, impacts close to real operating conditions in thermonuclear plants will be modelled, Chernyshikhin said.
The choice of cladding material is one of the most pressing issues in the development of fusion plants. It must withstand huge flows of heat and particles, neutron damage occurs in reactor conditions, said Yuri Gasparyan acting head of the Department of Plasma Physics at the National Research Nuclear University (NRNU) MEPhI [Moscow Engineering & Physics Institute].
"Plasma-referred elements are usually created from several materials, which adds to the problem of their reliable connection. The new development by MISiS and NIIEFA using additive technologies makes it possible to create composite material from tungsten and copper and to achieve the benefits of each of the materials as well as to organise a special internal structure," he added.
Much more work remains to be done to optimise the technology to reduce the porosity of the material and to study the functional properties of the material during thermal and plasma exposure. After that, it will be possible to talk more accurately about the prospects for this development, he noted.
According to the head of the expert analytical department for the fuel and energy complex at the Institute of Energy Strategy, Alexei Belogoryev, the development of solutions for fusion reactors is necessary, but their practical application is possible only after several decades. "All leading countries focused on space exploration are engaged in the creation of fusion reactors, since this type of energy is well suited for space flights. And if Russia wants to remain a leader in this area, then we need to develop technology. For civilian energy, fusion must be economically viable. In forecasts for 2050, none of the experts takes it into account, since the uncertainty associated with this approach is still very high," he noted.
© Business Trade Media International Limited. All Rights Reserved 2025.
* * *
январь |
февраль |
март |
апрель |
май |
июнь |
июль |
август |
сентябрь |
октябрь |
ноябрь |
декабрь |
 |
предыдущий месяц |
 1998-2025 |
следующий месяц |
 |
|