Декабрь 2004 г. |
Российская наука и мир (по материалам зарубежной электронной прессы) |
CCNMatthews / December 7, 2004
InnoCentive Expands its Virtual Scientific Network to 25 Leading Universities Throughout Russia
|
Всемирный форум InnoCentive - виртуальный портал, объединяющий крупнейших ученых и ведущие компании всего мира. Эта онлайновая система предлагает крупным компаниям, нуждающимся в решении сложных проблем, доступ к лучшим исследовательским умам по всему миру. В этой системе участвуют 25 ведущих российских университетов.
MOSCOW - InnoCentive today announced that it has signed formal relationships with Buryat State University in southern Siberia and Mordov State University and Ivanovo State Chemistry and Technical University, both in central Russia. With today's agreements, InnoCentive now has partnerships with 25 leading research-based universities located throughout Russia, enabling scientists and members of these esteemed centers of learning to work on scientific Challenges posted by the world's leading corporations and gain scientific recognition and financial reward. InnoCentive Vice President of Marketing Ali Hussein is in Moscow today meeting with members of the Russian Academy of Sciences on further cooperation with the Academy's research institutes throughout the Russian Federation.
"Since its inception, InnoCentive has placed a high importance on forging relationships with Russia's preeminent universities since many of the world's greatest discoveries have been made by Russian scientists," said Darren J. Carroll, CEO and president, InnoCentive. "To date, numerous InnoCentive Challenges have been solved by Russian scientists, and we have proven the vast business benefits of expanding the boundaries of scientific innovation."
"Today's meetings underscore the mutual commitment between the Russian Academy of Sciences and InnoCentive to foster scientific innovation and advance Russian science in the global market. Russia continues to be one of InnoCentive's top markets for scientific expertise, along with China, India and the U.S., and we look forward to establishing relationships with additional universities and bringing unique scientific opportunities to local scientists," said Mr. Hussein.
InnoCentive has held numerous scientific conferences at universities throughout Russia, including Moscow State University and St. Petersburg State University. To date, InnoCentive has signed agreements with the following universities: Altay State University, Blagoveshchensk State Education University, Buryat State University, Chelyabinsk State University, Irkutsk State University, Ivanovo State Chemistry and Technology University, Kazan State University, Kemerovo State University, Krasnoyarsk State University, Kurgan State University, Mordov State University, Moscow State University, Nijny Novgorod State University, Novosibirsk State University, Omsk State University, Rostov State University, Russian University of Chemistry and Technology, St. Petersburg State University, Samara State University, Saratov State University, Tambov State University, Tumen State University, Tver State Technical University, Tver State University, Yaroslavl State University.
InnoCentive is the first online forum that brings together leading global corporations and scientists from across the globe to solve tough R&D challenges. Global companies including BASF, Dow Chemical, Eli Lilly and Company and Procter & Gamble, which collectively spend billions of dollars on R&D, post scientific problems confidentially on the InnoCentive Web site where more than 70,000 leading scientists and scientific organizations located in more than 165 countries can solve them. Scientists who deliver solutions that best meet InnoCentive's Challenge requirements receive a financial award for their work, ranging up to USD$100,000.
* * *
Ambassade de France en Russie
/ 8-12-2004
Forum scientifique franco-russe |
6-7 декабря в Москве состоялся российско-французский форум "Новые инициативы в области науки и технологий". Было подписано 9 соглашений об организации совместных лабораторий - по исследованиям в области катализа, магнитоакустике и физике когерентных состояний, по теоретической физике, биоклиматологии, климатологическим циклам углерода и озона в Сибири и другие. Кроме того, посол Франции в России Жан Каде вручил знаки кавалеров Ордена Почетного Легиона трем российским ученым - академику Н.Плате, вице-президенту РАН и директору Института нефтехимического синтеза им. А.В.Топчиева, академику С.Багаеву, директору Института лазерной физики в Новосибирске, и академику М.Алфимову, научному директору Центра фотохимии РАН, за выдающийся вклад в научное сотрудничество между Россией и Францией.
Les 6 et 7 décembre 2004, au praesidium de l'Académie des Sciences de Russie (ASR) s'est tenu un Forum scientifique et technologique franco-russe organisé par l'ASR, le Centre National de la Recherche Scientifique (CNRS) et l'Ambassade de France en Russie.
Les deux jours du Forum ont débuté par la signature de sept accords de coopération scientifique entre les plus grands instituts des deux pays, l'Académie des Sciences de Russie, le Centre National de la Recherche Scientifique, la Fondation Russe pour la Recherche Fondamentale et des organismes thématiques. Les accords ont entériné la création de
- trois laboratoires européens associés respectivement dans les domaines de la catalyse, de la magnéto-acoustique et de la physique des états électroniques cohérents,
- un réseau de physique théorique,
- trois groupements de recherche européens, l'un portant sur les calculs en physique des particules, le deuxième concernant la bio-climatologie sur le forage antarctique de Vostok et le troisième portant sur l'étude climatologique des cycles du carbone et de l'ozone en Sibérie.
Dans le domaine technologique deux accords ont été signés pour favoriser l'innovation et la protection de la propriété intellectuelle entre les deux pays.
Grande fête de la Science et de la Technologie franco-russe, ce Forum devait symboliser "la recherche d'une haute production scientifique par la mise en commun du meilleur de ce que possède chacun des deux pays dans des thématiques rigoureusement sélectionnées". Commentant l'accord signé avec le Service Fédéral de la Propriété Intellectuelle, des Brevets et des Noms de Marques, l'Ambassadeur de France en Russie, M. Jean Cadet a rappelé que "le thème de l'innovation est une priorité en France et le devient en Russie. C'est un thème sur lequel nos deux Premier ministres vont se rencontrer prochainement". "Certains accords ont une signification particulière en ce moment à la lumière de la signature par la Russie", a conclu M. Cadet.
À l'occasion de ce Forum, trois académiciens russes ont été décorés dans l'Ordre de la Légion d'Honneur:
M. Nikolaï PLATÉ, Vice-Président de l'Académie des Sciences de Russie, membre effectif de l'Académie des Sciences de Russie, directeur de l'Institut de la synthèse pétrochimique A.V.Toptchiev près l'Académie des Sciences de Russie.
M. Sergueï BAGAYEV, Directeur de l'Institut de Physique des Lasers, professeur de l'Institut Physico-Technique de Moscou, membre titulaire de l'Académie des Science de Russie.
M. Mikhaïl ALFIMOV, directeur scientifique du Centre de Photochimie de l'ASR, ancien Président du Fonds Russe pour la Recherche Fondamentale, membre titulaire de l'Académie des Sciences de Russie.
"Je considère cette décoration comme la reconnaissance des nombreux efforts de l'Académie des Sciences de Russie au cours de ces dernières années comme en témoigne le Forum ouvert aujourd'hui", a déclaré M. Platé lors de la cérémonie de décoration. M. Bagayev a souligné que la coopération franco-russe était entrée dans une phase active et que les résultats actuels étaient excellents. M. Alfimov, pour sa part, s'est réjoui du fait qu'au cours des dernières 9 années, après la signature de l'accord entre le Fonds Russe pour la Recherche Fondamentale et le Centre National de la Recherche Scientifique, une centaine de projets de coopérations scientifiques franco-russes avaient été soutenus par les deux parties.
* * *
Innovations report / 07.12.2004
Building Materials For Interplanetary Stations
|
Новая технология, разработанная российскими учеными при поддержке Международного научно-технологического центра, позволяет создавать зеркала для телескопов, строительные материалы для космических станций, солнечные панели и даже дома на Луне или Марсе.
A new technology developed by Russian scientists with support of the International Science & Technology Center allows to produce antennas and telescope mirrors, walls and partitions for a space station, solar panels and even houses on the Moon or the Mars. All the above can be produced quickly, strongly, reliably, with minimal consumption of time, place, energy and money.
These building materials or rather peculiar semi-manufactured articles for future constructions will be brought to space in compact waterproof containers. They will look like plain damp sack in a dense packet. One of them might carry an inscription "Dwelling unit partition #". The second will likely contain a worktable. The third – the telescope mirror. There may be a lot of options, but the way they will look like is not essential. It is important that at the station the semimanufactured articles will be connected to a compressed gas can and inflated. And several hours later, the soft damp cloth would turn into hard solid material in the form of a table, partition or antenna.
Such pneumatic hardening constructions have been invented for use in space by the specialists of the Babakin Research-and-Development Center (Lavochkin Research-and-Production Association). The technology was developed with support of the International Science & Technology Center. The developers suggest that these lightweight and strong materials should be used for construction of partitions in the space stations (so far, orbital stations), and in the future – lunar and martian stations. They are certainly not intended for the shel or roof paneling, but for internal partitions, walls, bulk installations like solar panels, antenna or telescope mirror.
"One of the major construction problems in space is certainly delivery of materials and construction components, says Sergei Ivanov, project manager, chief specialist, Babakin Research-and-Development Center (Lavochkin Research-and-Production Association). Their weight and volume are a challenge." That is obvious. Transportation of each kilogram of cargo from the Earth to the orbital station, let alone the Moon or other planet, involves tremendous energy and accordingly financial spending. Building the International Space Station has already required transporting into space hundreds of tons of cargo, and the station has been under construction for more than 5 years and it is not finished yet. The same applies to volume.
Bulk constructions as a whole will not find room on board the spaceship. That means that these constructions have to be conveyed piece-meal and then assembled in the orbit. Sometimes, this is extremely complicated, particularly for constructions that require special degree of assembly precision. First of all, that relates to parabolic dishes and telescope mirrors as their diameter is measured in dozens of meters, any distortion of their surface may cause mistakes, sometimes irreparable ones.
"As a matter of fact, our technology is simple, the developers say. We form the further article from a special lightweight and solid cloth on the Earth. We cut out, sew, paste. We put the article into required shape and thoroughly control it. We put inside something like a rubber bladder, similar to a football bladder. The material is impregnated with a special solution. A semimanufactured article of the future antenna or partition is ready. Now it has to be fold up, packed hermetically, delivered to the destination and inflated."
The zest is that when drying up the solution hardens and transforms the impregnated material into a solid, tough and uninflammable "armour". It should be noted that in space, i.e. in vacuum, water will fly away by itself, without any assistance. The compressed gas would perform double work – it would unfold the article and put it into shape. Therefore, there is no need for additional energy consumption to inflate the construction and to solidify its form.
So far, such pneumatic solidificated constructions have not been in space. The researchers are optimizing impregnation composition, selecting the best materials for the basis, defining technology details. It is interesting to note that space vacuum conditions are being simulated simply by drying. However, it is clear now that new materials do not yield to traditional ones in durability, but at the same time these materials will be several times lighter. It is possible that the terrestrials will build the first house on the Moon or the Mars from these materials according to the technology developed in the Babakin Research-and-Development Center (Lavochkin Research-and-Production Association).
* * *
Informnauka (Informscience) Agency
/ 07.12.2004
Non Fire Yet But The Sensors Snap Into Action
|
Сотрудники Института молекулярной физики РНЦ "Курчатовский институт" предлагают совершенно новый подход к разработке газовых сенсоров для противопожарных датчиков. В отличие от уже существующих, эти сенсоры позволяют обнаружить появление в воздухе угарного газа на самой начальной стадии возгорания, задолго до появления пожара как такового. При этом новинку не обманут ни сигаретный дым, ни посторонние ароматы, из-за которых иногда срабатывает пожарная сигнализация традиционных систем.
Russian researchers offer a fundamentally new approach to the development of gas sensors for fire-prevention detecting devices. In contrast to already known ones, these sensors allow to detect unerringly fire occurrence at its earliest stage. However, this is not a single advantage of the innovation or a sole field of application.
Moscow scientists - specialists of the Institute of Molecular Physics (Russian Research Center) "Kurchatov Institute" have managed to teach fire-prevention detecting devices to promptly and precisely catch the carbon monoxide occurrence in the air. The new device would not be deceived either by cigarette smoke, or by stange scents which sometimes make traditional fire alarm systems snap into action. No device in the world is equal to the new one in terms of sensitivity and selectivity.
Alexey Vasiliev, senior staff scientist, manager of work (Kurchatov Institute), narrated about new sensors at the international "Chemical sensors" conference, which took place in July in a Japanese "town of science" - Tsukuba - located not far from Tokyo.
The appearance of the sensors, the first experimental specimens of which were demonstrated by A.A. Vasiliev to all comers, had been preceded by extensive experimental and theoretical work. The authors suggested an absolutely new approach to development of sensors, the approach relating both to the sensors' sensitive layer composition and their operating mode.
The point is that although the carbon oxide (CO - carbon monoxide) gas sensors have been known for quite a long time, their operation is not at all irreproachable. Principle of their operation is conventionally as follows: a layer of metal oxide, for example of tin or zinc, is the sensor. The determinate gas is sorbed on the oxide layer. Along with that, electroconductivity of the layer changes – it increases. That is the analytical response – the higher the conductivity of the sensitive layer gets, the higher the concentration of the sought gas is.
To increase the CO sensors selectivity, a catalyst – usually palladium – is introduced in the sensitive layer composition. When heated, the catalyst turns carbon monoxide into carbonic acid gas. This process, in its turn, affects the layer conductivity – therefore, these sensors are more sensitive, than the ones based simply on adsorption process.
The problem is that such sensors are easy to "deceive" – their readings are influenced by other gases as well, first of all by steam. And atmospheric humidity is known to be highly inconstant. That is why the fire safety systems are equipped with simplier sensors which are less sensitive but they snap into action "for sure" – when the room is already full of smoke or it is on fire, and the temperature exceeds all conceivable norms.
As for the sensors developed by the Moscow researchers, they would not be deceived either by steam or by any other gases, which impact the traditional sensors' readings. The sensitive layer based on tin oxide with addition of palladium and platinum (the latter accelerates the process of carbon monoxide oxidation through to carbonic acid gas) allows to perform this process most efficiently.
The temperature condition suggested by the developers provides for two more invaluable advantages. Firstly, the sensor response increases particularly at the CO concentration being close to the maximum permissible concentration. Secondly, the researchers managed to select the temperature of operation in such a way that other gases on the catalyst simply do not have time to oxidize. Therefore, neither steam, nor hydrogen, nor methane or other carbohydrates "misleading" traditional sensors do affect the new sensors' readings.
"Such sensors allow to detect occurrence of track concentrations of carbon monoxide at the initial stage of ignition, long before the fire appears as such, says Alexey Vasiliev. However, this is not their sole application. Sensors based on them may be used to identify the carbon monoxide concentration in motor exhausts."
* * *
Futura-Sciences / le 07/12/2004
Kliper, le successeur annoncé des capsules Soyouz
|
Ракетно-космическая корпорация "Энергия" представила проект нового космического челнока "Клиппер", который должен будет заменить устаревший "Союз" примерно к 2010 году. Шестиместный "Клиппер" весом 14,5 тонн рассчитан на 25 полетов и 10 лет эксплуатации.
On en sait un peu plus sur le successeur de la vieillissante capsule Soyouz, celle-là même utilisée tant par les astronautes américains et européens que par les cosmonautes russes pour rejoindre la Station spatiale internationale et redescendre sur la Terre.
Dénommé Kliper, l'engin spatial sera conçu et développé par la firme russe RKK Energuia pour remplacer la capsule Soyouz. Plusieurs missions lui seront affectées comme la rotation des équipages de la Station spatiale internationale ou des missions scientifiques et de tourisme spatial en orbite basse. Enfin, il sera utilisé comme véhicule de secours des équipages de la Station spatiale internationale. Il sera capable de fonctionner de façon complètement autonome en orbite pendant 15 jours et pourra rester arrimé à la Station une année complète, soit deux fois plus longtemps que les vaisseaux Soyouz.
Kliper fait partie du programme spatial de la Russie qui court jusqu'en 2015. Bien qu'aucune annonce officielle ne corrobore les propos de la presse russe, il semblerait que la Russie ne soit pas contre un partenariat avec l'Europe mais aussi l'Ukraine, le Kazakhstan et la Biélorussie, ces trois pays souhaitant participer au programme spatial Russe. Nous notons qu'aucun signe concret en direction des Etats-Unis n'a été adressé. La Russie étant persuadée que le coût global du développement de Kliper serait inférieur de beaucoup à celui du le Véhicule d'exploration avec équipage (CEV) du projet Constellation de la NASA qui doit entrer en service en 2014 et succéder aux navettes retirées à partir de 2010.
Le vaisseau spatial Kliper
Kliper est un vaisseau spatial de 10 m de long pour un diamètre d'environ 3 m et conçu pour rester en orbite environ 10 jours. D'une masse au lancement de 14,5 tonnes, il sera capable de transporter 2 pilotes et jusqu'à 4 passagers ou, pour la version cargo, 2 pilotes et jusqu'à 700 kg de charge utile. Energia travaille depuis 2000 à son développement. Toutefois, sa conception remonte au début des années 90 quand la Russie envisageait un véhicule spatial, alors plus grand, qui utiliserait les fusées Angara ou Zenith pour son lancement.
Le Kliper se compose de trois modules principaux. Le premier module est le SAS, un système de secours pour les équipages situé à l'extrémité de l'engin, au-dessus du nez. Il ne peut être utilisé qu'en cas de problème sur le pas de tir, avant le lancement. Le second module est le véhicule réutilisable de rentrée atmosphérique conçu pour 25 utilisations sans maintenance lourde. Il sera équipé de deux rangées de sièges où prendront place les 2 pilotes sur la première et 3 passagers sur la seconde. Enfin, selon le profil de la mission, l'espace libre derrière la seconde rangée de sièges peut être occupé soit par un quatrième passager, soit par une charge utile. La troisième partie du vaisseau est dépensable. Il s'agit du module de service essentiellement construit autour d'une capsule Soyouz modifiée. Il sera équipé de panneaux solaires et du système d'amarrage avec la Station spatiale. Enfin, il abritera tous les équipements nécessaires au soutien vie des équipages à bord et des réservoirs (carburant, oxygène, eau).
En ce qui concerne la phase d'atterrissage, aucun choix définitif n'a été fixé et deux profils de mission sont toujours étudiés. RKK Energuia étudie une version ailée de son engin, ce qui lui permettrait un retour plané et un atterrissage similaire aux navettes américaines. L'autre profil de mission, est le système d'atterrissage classique des Soyouz qui a fait ses preuves à maintes reprises. Le Kliper utilisera un système de trois parachutes non contrôlés et de plusieurs petits moteurs qui seraient allumés un peu avant l'atterrissage. Ce système doit permettre à l'engin de se poser à moins de 1 kilomètre autour de l'endroit prévu, sur la terre ferme. Il n'est pas exclu qu'Energia développe un système de coussin gonflable pour amoindrir la violence du choc sur le sol et qui autoriserait un amerrissage.
Le premier lancement (vol d'essai) pourrait avoir lieu en 2010 depuis Baïkonour, mais aussi depuis Plesetsk où la construction d'un pas de tir spécifique sera nécessaire. Enfin, il n'est pas exclu que l'engin soit également utilisé depuis Kourou.
© 2001-2004 Futura-Sciences.com. Tous droits réservés.
* * *
AlphaGalileo / 10.12.2004
Taste Of Victory Is Also A Drug |
К хорошему, как известно, привыкают быстро. Тот, кто испытал радость победы, желает ощущать ее снова и снова и превращается в агрессора. Это доказали российские ученые, изучающие агрессивное поведение мышей. Доктор биологических наук, заведующая сектором нейрогенетики социального поведения Института цитологии и генетики СО РАН Н.Н. Кудрявцева доказала, что постоянный социальный успех превращает победителя в агрессора. Формируется внутреннее побуждение нападать и угнетать, поскольку с этим ранее были связаны положительные эмоции, сопровождающие победу над поверженным противником. За эти эмоции ответственны опиоидэргические системы мозга. На эти же системы воздействуют и опиатные наркотики. Мозг "привыкает" к положительным эмоциям так же, как к наркотикам, и, чтобы вновь испытать радость победы, нужен более сильный раздражитель.
People quickly get used to good things. The person who has experienced joy of victory many times would wish to feel it over and over again and (s)he turns into aggressor. This has been proved by Russian researchers investigating aggressive behavior of mice.
Investigating aggressive behavior of mice N.N. Kudriavtseva, Doctor of Science (Biology), Head of the Neurogenetics of Social Behavior Sector, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, has proved that continuous social success turns the winner into aggressor.
The life of any animal, be it an insect or a primacy, is impossible without aggression. An animal becomes aggressive when it feels pain or fear, when it has to protect the territory, female or babies, or when it has to ascertain who is the senior. Although there are a lot of causes for aggression in nature, it seldom comes down to a brutal fight and particularly to a murder. Judging by the scent, appearance and each other's behavior, the males understand who is stronger, and the weaker retreats. Nevertheless, the life requires that the males should always be ready for aggression. They accumulate aggressive energy, which looks for coming out. If the cause for aggression does not occur for a long time, any trifle can serve as a "trigger". Sometimes the males overfilled with evil energy provoke the fight by themselves. Some people behave in the same way. They have formed a habit for permanent aggressive behavior.
Pretty often, this is typical of the people of certain professions: military men, militiamen, security guards, professional sportsmen (boxers or hockey players). Such type of aggression is called trained one by psychologists. Laboratory researches on mice have allowed to explain what happens to such people. The males were kept in pairs in a small common cage divided by a transparent partition with holes, which allowed the animals to see, hear and smell each other excluding physical contact. Once a day, the partition was removed, and the animals immediately rushed to sort out their relationship. Already during the first clashes it became clear who was the winner and who was beaten. Every day, the winner revelled in the success. No such situations occur in natural conditions, that is why long-standing winners began to behave abnormally in the course of time: they got very active, aggressive, irritable and anxious. Looking for the way out for their irritation, the males threw themselves successively on anything: on another male in a subordination posture, on a female, on the experimentalist's hand.
The researchers came to the conclusion that the males with extensive experience of aggression formed internal impulse for attacking and oppressing another male, as they earlier experienced positive emotions in this connection, accompanying the victory over a prostrate enemy. The opioidergic systems of the brain are responsible for these emotions. Opiate drugs also affect the same systems. The brain gets "used" to positive emotions in the same way as to drugs, and a stronger stimulus is needed to experience the joy of victory again. That is why the males accustomed to victories become more and more aggressive. If the mice "addicted" to victory are isolated, they do not calm down, but become even more violent. When they get to share the cage with the partner again, they rush into fighting with redoubled energy. The more time the winner mice spent in solitary confinement, the more aggressive they became. It can be said that they had accumulated aggressive energy all that time and this energy broke through outside.
N.N. Kudriavtseva points out that aggression can be provoked not only by experience of victories, but also by lengthy stay in any unfavorable environment. In case of permanent physical or psychological discomfort, aggression develops even with the individuals that are not disposed to its manifestation. Accumulation of negative emotions serves as a neurophysiological mechanism in this cases, triggering aggression of irritation and fear that would not become apparent in case of short-term action on negative factors.
It was Konrad Lorenz, outstanding etologist and the Nobel Prize laureate, who assumed that aggressive energy accumulated and looked for way out. The scientist also applied his concept to the human society, in particular, he explained by the excess of aggressive energy the actions of the world leaders who unleashed wars and annihilated tremendous amounts of people. In their time, the majority of researchers rejected Lorenz' idea, but now it has both theoretical and experimental verification.
© AlphaGalileo Foundation 2003
* * *
|
предыдущий месяц |
1998-2004 |
следующий месяц |
|
|