Preface ......................................................... x
Contributing authors ......................................... xiii
Stefania Cometa and Luigia Sabbatini
1 Introductory remarks on polymers and polymer surfaces ...... 1
1.1 Why polymers? .............................................. 1
1.1.1 Generality .......................................... 1
1.1.2 Synthesis ........................................... 1
1.1.3 Classification and nomenclature ..................... 3
1.1.4 Morphology and properties ........................... 4
1.2 Why to investigate a polymer surface? ...................... 8
1.2.1 Nature and dynamics of polymer surfaces ............. 9
1.2.1.1 Vibrational dynamics of macromolecules .......... 9
1.2.1.2 Changes in thermodynamic properties on the
surface ........................................ 10
1.2.1.3 Rotation of functional groups on polymer
backbones in response to different
environmental conditions ....................... 13
1.2.1.4 Surface interdiffusion or segregation of
copolymers or polymer blends ................... 17
1.2.2 Surface modification of polymers ................... 18
1.2.2.1 Improvement of wettability ..................... 18
1.2.2.2 Improvement of porosity or roughening .......... 19
1.2.2.3 Improvement of adhesion ........................ 23
1.2.2.4 Interaction of polymer with biological
environment: Biocompatibility .................. 25
1.2.2.5 Improvement of conductivity .................... 26
1.2.3 Possibility of predicting polymer performances by
surface characterization techniques ................ 28
References ................................................ 30
Beat A. Keller
2 Investigation of polymer surfaces by time-of-flight
secondary ion mass spectrometry ................................ 39
2.1 Introduction .............................................. 39
2.1.1 Analysis of surfaces ............................... 39
2.1.2 The SIMS process: A detailed approach of theory
and instruments .................................... 40
2.1.2.1 Sputter process and SSIMS approach ............. 41
2.1.2.2 Mass analyzer systems .......................... 43
2.1.2.3 Ion sources and primary ions ................... 43
2.1.2.4 Surface ionization ion guns .................... 44
2.1.2.5 Duoplasmatron and gas ion sources .............. 45
2.1.2.6 Liquid metal ion guns .......................... 45
2.1.2.7 Gas cluster ion sources ........................ 46
2.1.2.8 High-resolution ion images obtained from
cluster LMIG sources ........................... 47
2.2 TOF-SIMS investigations of polymer materials .............. 49
2.2.1 General remarks .................................... 49
2.2.2 Polymers ........................................... 49
2.2.2.1 Polydimethylsiloxane ........................... 51
2.2.2.2 Polystyrene .................................... 52
2.2.2.3 Polyacrylates .................................. 53
2.2.2.4 Fluorinated polymers ........................... 53
2.2.2.5 Poly(ethyleneterephthalate) .................... 55
2.2.2.6 Polyethylene glycol ............................ 55
2.2.2.7 Spectra libraries and G-SIMS approach .......... 55
2.2.2.8 Multivariate analysis and principal component
analysis ....................................... 57
2.2.3 Polymer additives .................................. 58
2.2.4 Copolymers ......................................... 59
2.2.5 Multicomponent polymers (polymer blends) ........... 62
2.2.6 Plasma modification and deposition ................. 63
2.2.7 Other applications ................................. 65
References ................................................ 66
Elvira De Giglio, Nicoletta Ditaranto, and Luigia Sabbatini
3 Polymer surface chemistry: Characterization by XPS ........ 73
3.1 Introduction .............................................. 73
3.2 Photoelectron spectroscopy: A brief history ............... 74
3.2.1 Basic principles ................................... 74
3.2.2 Spectroscopic and X-ray notations .................. 76
3.3 Instrumentation ........................................... 76
3.3.1 Vacuum system ...................................... 78
3.3.2 X-ray sources ...................................... 78
3.3.2.1 Dual Mg/Al anode X-ray tube .................... 78
3.3.2.2 Monochromatic source ........................... 79
3.3.2.3 Synchrotron radiation source ................... 79
3.3.3 Energy analyzers ................................... 79
3.3.4 Detectors .......................................... 81
3.3.5 Charge compensation ................................ 81
3.3.6 Small-area XPS: imaging and mapping ................ 82
3.3.7 Ambient-pressure photoelectron spectroscopy ........ 83
3.4 Chemical information from XPS ............................. 83
3.5 Chemical shift and its significance in the analysis of
polymers .................................................. 87
3.6 Chemical derivatization techniques in conjunction with
XPS ....................................................... 89
3.7 Polymers surface segregation .............................. 93
3.8 Polymers physical treatments/grafting ..................... 98
3.9 Polymers aging ........................................... 104
References ............................................... 107
Filippo Mangolini and Antonella Rossi
4 Attenuated total reflection-Fourier transform infrared
spectroscopy: A powerful tool for investigating polymer
surfaces and interfaces .................................. 113
4.1 Principles of Fourier transform infrared spectroscopy .... 113
4.2 Theory of attenuated total reflection FTIR spectroscopy .. 114
4.2.1 Propagation of IR radiation through a planar
interface between two isotropic media ............. 114
4.2.2 Propagation of IR radiation through stratified
media ............................................. 118
4.2.3 Penetration depth and effective thickness ......... 121
4.2.3.1 Penetration depth in ATR/FTIR spectroscopic
analysis of polymers .......................... 125
4.2.4 Transmission FTIR vs ATR/FTIR spectroscopy ........ 126
4.3 Experimental methods in ATR/FTIR spectroscopy ............ 128
4.3.1 Internal reflection elements ...................... 128
4.3.2 Internal reflection attachments ................... 129
4.3.3 Metal underlayer ATR/FTIR spectroscopy ............ 130
4.3.3.1 Effect of metal underlayer on penetration
depth in ATR/FTIR spectroscopic analysis of
polymers ...................................... 133
4.4 Potentials and limitations of ATR/FTIR spectroscopy ...... 137
4.5 Applications of ATR/FTIR spectroscopy .................... 138
4.5.1 ATR/FTIR spectroscopy in polymer science .......... 138
4.5.2 In situ ATR/FTIR spectroscopy of tribochemical
phenomena ......................................... 140
Acknowledgments .......................................... 147
References ............................................... 147
Dalia Yablon
5 Scanning probe microscopy of polymers .................... 153
5.1 Introduction ............................................. 153
5.2 Sample preparation ....................................... 155
5.3 Phase imaging ............................................ 156
5.3.1 Background on phase imaging ....................... 156
5.3.2 Applications of phase imaging to polymer
materials ......................................... 156
5.4 Multifrequency imaging ................................... 159
5.5 Nanorheological mapping .................................. 160
5.6 Thermal/spectroscopic measurements ....................... 163
5.7 Environmental measurements ............................... 164
5.8 Conclusions .............................................. 165
References ............................................... 166
Miroslav Šlouf, Tat́ana Vacková, František Lednický, and
Petr Wandrol
6 Polymer surface morphology: Characterization by electron
microscopies ............................................. 169
6.1 Introduction ............................................. 169
6.2 Scanning electron microscopy ............................. 169
6.2.1 SEM: Principles ................................... 169
6.2.1.1 Microscope and image formation ................ 169
6.2.1.2 Interaction of the electron beam with the
specimen ...................................... 171
6.2.2 SEM: Classical modes .............................. 173
6.2.2.1 SE imaging .................................... 174
6.2.2.2 BSE imaging ................................... 174
6.2.2.3 EDX spectra ................................... 175
6.2.2.4 STEM imaging .................................. 177
6.2.3 SEM: Modern trends ................................ 177
6.2.3.1 Variable-pressure SEM ......................... 177
6.2.3.2 Variable-temperature SEM ...................... 179
6.2.3.3 Low-voltage SEM ............................... 180
6.2.3.4 Multidimensional SEM .......................... 180
6.2.4 SEM: Further possibilities ........................ 181
6.2.4.1 Spectroscopic methods ......................... 181
6.2.4.2 Methods connected with crystal structure of
samples ....................................... 182
6.2.4.3 Methods using sample-specific interactions
with electron beam ............................ 182
6.3 Transmission electron microscopy ......................... 182
6.4 Sample preparation ....................................... 183
6.4.1 Overview of polymer materials ..................... 183
6.4.2 Specific features of polymer materials ............ 183
6.4.2.1 Charging and electron-beam damage ............. 183
6.4.2.2 Skin-core effect .............................. 184
6.4.2.3 Low contrast between components ............... 185
6.4.3 Preparation techniques for polymer materials ...... 185
6.4.3.1 Direct observation of polymer surface ......... 186
6.4.3.2 Fracturing .................................... 186
6.4.3.3 Etching ....................................... 187
6.4.3.4 Cutting and staining .......................... 188
6.4.3.5 Special techniques ............................ 189
6.5 Applications ............................................. 191
6.5.1 Homopolymers ...................................... 191
6.5.2 Copolymers ........................................ 193
6.5.3 Polymer blends .................................... 195
6.5.4 Polymer composites ................................ 197
6.5.5 Special applications .............................. 198
6.5.5.1 Low-voltage SEM in polymer science ............ 198
6.5.5.2 Wet specimens in polymer science .............. 199
6.5.5.3 Further applications .......................... 200
Acknowledgments .......................................... 201
References ............................................... 201
Fabio Palumbo and Rosa Di Mundo
7 Wettability: Significance and measurement ................ 207
7.1 Introduction ............................................. 207
7.2 CA and surface energy .................................... 210
7.2.1 Surface energy evaluation ......................... 211
7.2.1.1 Critical surface energy method ................ 212
7.2.1.2 Multicomponent approaches ..................... 215
7.2.1.3 Particular cases: High-energy surfaces and
granular materials ............................ 215
7.2.2 Considerations on surface energy evaluation ....... 216
7.3 CA hysteresis ............................................ 218
7.4 Measurement methods for CA ............................... 222
7.4.1 Direct measurement by optical goniometry .......... 222
7.4.2 Force tensiometry ................................. 225
7.4.3 Approach comparison ............................... 226
7.5 Application of CA measurement ............................ 227
7.5.1 From hydrophobic to water- and oil-repellent
materials ......................................... 227
7.5.2 Hydrophilic to super-hydrophilic materials ........ 233
7.5.3 Hydrophobic recovery of hydrophilic surfaces ...... 235
7.5.4 CA on porous surfaces ............................. 238
7.5.5 Acid-base characterization of polymeric surfaces .. 239
References ............................................... 241
Eva Bittrich and Klaus-Jochen Eichhorn
8 Advances of spectroscopic ellipsometry in the analysis
of thin polymer films-polymer interfaces ................. 247
8.1 Introduction ............................................. 247
8.1.1 Basics of ellipsometry ............................ 247
8.2 New ellipsometric methods, techniques, and aspects ....... 250
8.2.1 Optical dispersion ................................ 250
8.2.2 In situ setups .................................... 253
8.2.2.1 Liquid cells for measurements in solution ..... 253
8.2.2.2 Coupling ellipsometry with quartz crystal
microbalance .................................. 254
8.2.2.3 Total internal reflection ellipsometry ........ 256
8.2.3 In-line monitoring ................................ 257
8.2.3.1 Monitoring processes in a vacuum chamber ...... 258
8.2.3.2 R2R fabrication processes ..................... 258
8.2.4 Micropatterned films .............................. 259
8.2.4.1 VIS imaging ellipsometry ...................... 259
8.2.4.2 Microfocus-mapping IR ellipsometry ............ 260
8.3 Selected architectures of polymer films, blends, and
composites ............................................... 261
8.3.1 Polymer blends and cross-linked polymer films ..... 261
8.3.2 Tg in thin polymer films of different
architectures: Confinement effects ................ 262
8.3.3 Polymer-NP composites ............................. 264
8.3.4 Polymers in nanostructured surfaces ............... 266
8.4 Polymer layers absorbing in the VIS spectral range ....... 267
8.4.1 Chemical modification with dye molecules .......... 267
8.4.2 Semiconducting polymers and blends for OPV and
OLED .............................................. 268
8.5 Swelling and adsorption processes: Proteins and stimuli-
responsive polymers ...................................... 271
8.5.1 Swelling of stimuli-responsive polymer layers ..... 271
8.5.2 Protein adsorption at soft polymer surfaces ....... 274
References ............................................... 278
Index ......................................................... 287
|