Zilber B. Zariski geometries: geometry from the logician's point of view (New York, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаZilber B. Zariski geometries: geometry from the logician's point of view. - New York: Cambridge univ. press, 2010. - xi, 212 p. - (London Mathematical Society lecture note series; 360). - Bibliogr.: p. 207-209. - Ind.: p. 210-212. - ISBN 978-0-521-73560-5
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Acknowledgments ................................................ xi
1  Introduction ................................................. 1
   1.1  Introduction ............................................ 1
   1.2  About model theory ...................................... 7
2  Topological structures ...................................... 12
   2.1  Basic notions .......................................... 12
   2.2  Specialisations ........................................ 14
        2.2.1  Universal specialisations ....................... 17
        2.2.2  Infinitesimal neighbourhoods .................... 19
        2.2.3  Continuous and differentiable function .......... 22
3  Noetherian Zariski structures ............................... 25
   3.1  Topological structures with good dimension notion ...... 25
        3.1.1  Good dimension .................................. 25
        3.1.2  Zariski structures .............................. 26
   3.2  Model theory of Zariski structures ..................... 27
        3.2.1  Elimination of quantifiers ...................... 27
        3.2.2  Morley rank ..................................... 30
   3.3  One-dimensional case ................................... 30
   3.4  Basic examples ......................................... 35
        3.4.1  Algebraic varieties and orbifolds over
               algebraically closed fields ..................... 35
        3.4.2  Compact complex manifolds ....................... 36
        3.4.3  Proper varieties of rigid analytic geometry ..... 38
        3.4.4  Zariski structures living in differentially
               closed fields ................................... 39
   3.5  Further geometric notions .............................. 40
        3.5.1 Pre-smoofhness ................................... 40
        3.5.2  Coverings in structures with dimension .......... 43
        3.5.3  Elementary extensions of Zariski structures ..... 44
   3.6  Non-standard analysis .................................. 50
        3.6.1  Coverings in pre-smooth structures .............. 50
        3.6.2  Multiplicities .................................. 53
        3.6.3  Elements of intersection theory ................. 57
        3.6.4  Local isomorphisms .............................. 59
   3.7  Getting new Zariski sets ............................... 62
   3.8  Curves and their branches .............................. 69
4  Classification results ...................................... 78
   4.1  Getting a group ........................................ 78
        4.1.1  Composing branches of curves .................... 79
        4.1.2  Pre-group of jets ............................... 82
   4.2  Getting a field ........................................ 88
   4.3  Projective spaces over a Z-field ....................... 93
        4.3.1  Projective spaces as Zariski structures ......... 93
        4.3.2  Completeness .................................... 94
        4.3.3  Intersection theory in projective spaces ........ 95
        4.3.4  Generalised Bezout and Chow theorems ............ 97
   4.4  The classification theorem ............................ 100
        4.4.1  Main theorem ................................... 100
        4.4.2  Meromorphic functions on a Zariski set ......... 101
        4.4.3  Simple Zariski groups are algebraic ............ 103
5  Non-classical Zariski geometries ........................... 105
   5.1  Non-algebraic Zariski geometries ...................... 105
   5.2  Case study ............................................ 109
        5.2.1  The N-cover of the affine line ................. 109
        5.2.2  Semi-definable functions on PN ................. 109
        5.2.3  Space of semi-definable functions .............. 111
        5.2.4  Representation of fig.4 ............................ 111
        5.2.5  Metric limit ................................... 115
   5.3  From quantum algebras to Zariski structures ........... 120
        5.3.1  Algebras at roots of unity ..................... 122
        5.3.2  Examples ....................................... 125
        5.3.3  Definable sets and Zariski properties .......... 134
6  Analytic Zariski geometries ................................ 137
   6.1  Definition and basic properties ....................... 137
        6.1.1  Closed and projective sets ..................... 138
        6.1.2  Analytic subsets ............................... 139
   6.2  Compact analytic Zariski structures ................... 140
   6.3  Model theory of analytic Zariski structures ........... 144
   6.4  Specialisations in analytic Zariski structures ........ 153
   6.5  Examples .............................................. 155
        6.5.1  Covers of algebraic varieties .................. 155
        6.5.2  Hard examples .................................. 159
A  Basic model theory ......................................... 163
   A.l  Languages and structures .............................. 163
   A.2  Compactness theorem ................................... 166
   A.3  Existentially closed structures ....................... 170
   A.4  Complete and categorical theories ..................... 172
        A.4.1  Types in complete theories ..................... 175
        A.4.2  Spaces of types and saturated models ........... 177
        A.4.3  Categoricity in uncountable powers ............. 182
В  Elements of geometric stability theory ..................... 185
   B.1  Algebraic closure in abstract structures .............. 185
        B.1.1  Pre-geometry and geometry of a minimal
               structure ...................................... 186
        B.1.2  Dimension notion in strongly minimal
               structures ..................................... 189
        B.1.3  Macro- and micro-geometries on a strongly
               minimal structure .............................. 194
   B.2  Trichotomy conjecture ................................. 200
        B.2.1  Trichotomy conjecture .......................... 200
        B.2.2  Hrashovski's construction of new stable
               structures ..................................... 202
        B.2.3  Pseudo-exponentiation .......................... 205
References .................................................... 207
Index ......................................................... 210


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:26:18 2019. Размер: 10,263 bytes.
Посещение N 1367 c 08.04.2014