Ghergu M. Nonlinear PDEs: mathematical models in biology, chemistry and population genetics (Berlin; Heidelberg, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаGhergu M. Nonlinear PDEs: mathematical models in biology, chemistry and population genetics / M.Ghergu, V.D.Radulescu. - Berlin; Heidelberg: Springer, 2012. - xviii, 391 p. - (Springer monographs in mathematics). - Bibliogr.: p.377-385. - Ind.: p.387-391. - ISBN 978-3-642-22663-2; ISSN 1439-7382
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
1  Overview of Mathematical Methods in Partial Differential
   Equations .................................................... 1
   1.1  Comparison Principles ................................... 1
   1.2  Radial Symmetry of Solutions to Semilinear Elliptic
        Equations ............................................... 6
   1.3  Variational Methods ..................................... 9
        1.3.1  Ekeland's Variational Principle .................. 9
        1.3.2  Mountain Pass Theorem ........................... 11
        1.3.3  Around the Palais-Smale Condition for Even
               Functionals ..................................... 12
        1.3.4  Bolle's Variational Method for Broken
               Symmetries ...................................... 14
   1.4  Degree Theory .......................................... 15
        1.4.1  Brouwer Degree .................................. 15
        1.4.2  Leray-Schauder Degree ........................... 16
        1.4.3  Leray-Schauder Degree for Isolated Solutions .... 17
2  Liouville Type Theorems for Elliptic Operators
   in Divergence Form .......................................... 19
   2.1  Introduction ........................................... 19
   2.2  Some Related ODE Problems .............................. 21
3  2.3  Main Results ........................................... 26
   low-Up Boundary Solutions of the Logistic Equation .......... 29
   3.1  Singular Solutions of the Logistic Equation ............ 30
        3.1.1  A Karamata Regular Variation Theory Approach .... 43
   3.2  Keller-Osserman Condition Revisited .................... 60
        3.2.1  Setting of the Problem .......................... 61
        3.2.2  Minimality Principle ............................ 65
        3.2.3  Existence of Solutions on Some Ball ............. 70
        3.2.4  Existence of Solutions on Small Balls ........... 72
        3.2.5  Existence of Solutions on Smooth Domains ........ 73
        3.2.6  Blow-Up Rate of Radially Symmetric Solutions .... 74
        3.2.7  Blow-Up Rate of Solutions on Smooth Domains ..... 75
        3.2.8  A Uniqueness Result ............................. 77
        3.2.9  Discrete Equations .............................. 79
        3.2.10 Numerical Computations .......................... 86
   3.3  Entire Large Solutions ................................. 91
        3.3.1  A Useful Result: Bounded Entire Solutions ....... 91
        3.3.2  Existence of an Entire Large Solution ........... 93
        3.3.3  Uniqueness of Solution .......................... 98
   3.4  Elliptic Equations with Absorption .................... 100
   3.5  Lack of the Keller-Osserman Condition ................. 106
4  Singular Lane-Emden-Fowler Equations and Systems ........... 117
   4.1  Bifurcation Problems for Singular Elliptic Equations .. 117
   4.2  Lane-Emden-Fowler Systems with Negative Exponents ..... 130
        4.2.1  Preliminary Results ............................ 132
        4.2.2  Nonexistence of a Solution ..................... 139
        4.2.3  Existence of a Solution ........................ 142
        4.2.4  Regularity of Solution ......................... 149
        4.2.5  Uniqueness ..................................... 153
   4.3  Sublinear Lane-Emden Systems with Singular Data ....... 155
        4.3.1  Case p > 0 and q > 0 ........................... 155
        4.3.2  Case p > 0 and q < 0 ........................... 158
        4.3.3  Case p < 0 and q < 7 < 0 ....................... 162
        4.3.4  Further Extensions: Superlinear Case ........... 163
5  Singular Elliptic Inequalities in Exterior Domains ......... 167
   5.1  Introduction .......................................... 167
   5.2  Some Elliptic Problems in Bounded Domains ............. 168
   5.3  An Equivalent Integral Condition ...................... 174
   5.4  The Nondegenerate Case ................................ 175
        5.4.1  Nonexistence Results ........................... 175
        5.4.2  Existence Results .............................. 180
   5.5  The Degenerate Case ................................... 188
   5.6  Application to Singular Elliptic Systems in Exterior
        Domains ............................................... 203
6  Two Quasilinear Elliptic Problems .......................... 211
   6.1  A Degenerate Elliptic Problem with Lack of
        Compactness ........................................... 211
        6.1.1  Introduction ................................... 211
        6.1.2  Auxiliary Results .............................. 214
        6.1.3  Proof of the Main Result ....................... 222
   6.2  A Quasilinear Elliptic Problem for p-Laplace
        Operator .............................................. 227
7  Some Classes of Polyharmonic Problems ...................... 245
   7.1  An Eigenvalue Problem with Continuous Spectrum ........ 245
   7.2  Infinitely Many Solutions for Perturbed
        Nonlinearities ........................................ 251
   7.3  A Biharmonic Problem with Singular Nonlinearity ....... 258
8  Large Time Behavior of Solutions for Degenerate Parabolic
   Equations .................................................. 267
   8.1  Introduction .......................................... 267
   8.2  Superlinear Case ...................................... 268
   8.3  Sublinear Case ........................................ 275
   8.4  Linear Case ........................................... 283
9  Reaction-Diffusion Systems Arising in Chemistry ............ 287
   9.1  Introduction .......................................... 287
   9.2  Brusselator Model ..................................... 288
        9.2.1  Existence of Global Solutions .................. 290
        9.2.2  Stability of the Uniform Steady State .......... 293
        9.2.3  Diffusion-Driven Instability ................... 295
        9.2.4  A Priori Estimates ............................. 296
        9.2.5  Nonexistence Results ........................... 299
        9.2.6  Existence Results .............................. 302
   9.3  Schnackenberg Model ................................... 306
        9.3.1  The Evolution System and Global Solutions ...... 307
        9.3.2  A Priori Estimates ............................. 310
        9.3.3  Nonexistence of Nonconstant Steady States ...... 314
        9.3.4  Existence Results .............................. 317
   9.4  Lengyel-Epstein Model ................................. 322
        9.4.1  Global Solutions in Time ....................... 323
        9.4.2  Turing Instabilities ........................... 326
        9.4.3  A Priori Estimates for Stationary Solutions .... 328
        9.4.4  Nonexistence Results ........................... 330
        9.4.5  Existence ...................................... 332
10 Pattern Formation and the Gierer-Meinhardt Model in
   Molecular Biology .......................................... 337
   10.1 Introduction .......................................... 337
   10.2 Some Preliminaries .................................... 340
   10.3 Case 0 ≤ p < 1 ........................................ 347
        10.3.1 Existence ...................................... 347
        10.3.2 Further Results on Regularity .................. 354
        10.3.3 Uniqueness of a Solution ....................... 356
   10.4 Case p < 0 ............................................ 362
        10.4.1 A Nonexistence Result .......................... 362
        10.4.2 Existence ...................................... 364

A  Caffarelli-Kohn-Nirenberg Inequality ....................... 369

В  Estimates for the Green Function Associated to the
   Biharmonic Operator ........................................ 373
   References ................................................. 377

Index ......................................................... 387


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:26:18 2019. Размер: 11,879 bytes.
Посещение N 1594 c 08.04.2014