Beilina L. Approximate global convergence and adaptivity for coefficient inverse problems (New York, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBeilina L. Approximate global convergence and adaptivity for coefficient inverse problems / L.Beilina, M.V.Klibanov. - New York: Springer, 2012. - xv, 407 p. - Ref.: p.392-399. - Ind.: p.401-407. - ISBN 978-1-4419-7804-2
 

Оглавление / Contents
 
1  Two Central Questions of This Book and an Introduction to 
   the Theories of Ill-posed and Coefficient Inverse Problems ... 1
   1.1  Two Central Questions of This Book ...................... 2
        1.1.1  Why the Above Two Questions Are the Central
               Ones for Computations of CIPs .................... 4
        1.1.2  Approximate Global Convergence ................... 6
        1.1.3  Some Notations and Definitions .................. 11
   1.2  Some Examples of Ill-posed Problems .................... 14
   1.3  The Foundational Theorem of A.N. Tikhonov .............. 21
   1.4  Classical Correctness and Conditional Correctness ...... 23
   1.5  Quasi-solution ......................................... 25
   1.6  Regularization ......................................... 27
   1.7  The Tikhonov Regularization Functional ................. 31
        1.7.1  The Tikhonov Functional ......................... 32
        1.7.2  Regularized Solution ............................ 34
   1.8  The Accuracy of the Regularized Solution for a Single
        Value of α ............................................. 35
   1.9  Global Convergence in Terms of Definition 1.1.2.4 ...... 39
        1.9.1  The Local Strong Convexity ...................... 40
        1.9.2  The Global Convergence .......................... 45
   1.10 Uniqueness Theorems for Some Coefficient Inverse
        Problems ............................................... 46
        1.10.1 Introduction .................................... 46
        1.10.2 Carleman Estimate for a Hyperbolic Operator ..... 48
        1.10.3 Estimating an Integral .......................... 56
        1.10.4 Cauchy Problem with the Lateral Data for a
               Hyperbolic Inequality with Volterra-Like
               Integrals ....................................... 57
        1.10.5 Coefficient Inverse Problem for a Hyperbolic
               Equation ........................................ 62
        1.10.6 The First Coefficient Inverse Problem for a
               Parabolic Equation .............................. 68
        1.10.7 The Second Coefficient Inverse Problem for a
               Parabolic Equation .............................. 70
        1.10.8 The Third Coefficient Inverse Problem for a
               Parabolic Equation .............................. 76
        1.10.9 A Coefficient Inverse Problem for an Elliptic
               Equation ........................................ 78
   1.11 Uniqueness for the Case of an Incident Plane Wave
        in Partial Finite Differences .......................... 79
        1.11.1 Results ......................................... 81
        1.11.2 Proof of Theorem 1.11.1.1 ....................... 83
        1.11.3 The Carleman Estimate ........................... 85
        1.11.4 Proof of Theorem 1.11.1.2 ....................... 90
2  Approximately Globally Convergent Numerical Method .......... 95
   2.1  Statements of Forward and Inverse Problems ............. 97
   2.2  Parabolic Equation with Application in Medical
        Optics ................................................. 98
   2.3  The Transformation Procedure for the Hyperbolic
        Case .................................................. 100
   2.4  The Transformation Procedure for the Parabolic Case ... 103
   2.5  The Layer Stripping with Respect to the Pseudo
        Frequency ............................................. 106
   2.6  The Approximately Globally Convergent Algorithm ....... 109
        2.6.1  The First Version of the Algorithm ............. 1ll
        2.6.2  A Simplified Version of the Algorithm .......... 112
   2.7  Some Properties of the Laplace Transform of the
        Solution oftheCauchy Problem (2.1) and (2.2) .......... 115
        2.7.1  The Study of the Limit (2.12) .................. 115
        2.7.2  Some Additional Properties of the Solution
               of the Problem (2.11) and (2.12) ............... 118
   2.8  The First Approximate Global Convergence Theorem ...... 122
        2.8.1  Exact Solution ................................. 123
        2.8.2  The First Approximate Global Convergence
               Theorem ........................................ 125
        2.8.3  Informal Discussion of Theorem 2.8.2 ........... 137
        2.8.4  The First Approximate Mathematical Model ....... 138
   2.9  The Second Approximate Global Convergence Theorem ..... 140
        2.9.1  Estimates of the Tail Function ................. 142
        2.9.2  The Second Approximate Mathematical Model ...... 151
        2.9.3  Preliminaries .................................. 155
        2.9.4  The Second Approximate Global Convergence
               Theorem ........................................ 157
   2.10 Summary ............................................... 166
3  Numerical Implementation of the Approximately Globally
   Convergent Method .......................................... 169
   3.1  Numerical Study in 2D ................................. 170
        3.1.1  The Forward Problem ............................ 171
        3.1.2  Main Discrepancies Between the Theory and the
               Numerical Implementation ....................... 173
        3.1.3  Results of the Reconstruction .................. 174
   3.2  Numerical Study in 3D ................................. 186
        3.2.1  Computations of the Forward Problem ............ 186
        3.2.2  Result of the Reconstruction ................... 188
   3.3   Summary of Numerical Studies ......................... 191
4  The Adaptive Finite Element Technique and Its Synthesis
   with the Approximately Globally Convergent Numerical
   Method ..................................................... 193
   4.1  Introduction .......................................... 193
        4.1.1  The Idea of the Two-Stage Numerical
               Procedure ...................................... 193
        4.1.2  The Concept of the Adaptivity for CIPs ......... 194
   4.2  Some Assumptions ...................................... 196
   4.3  State and Adjoint Problems ............................ 198
   4.4  The Lagrangian ........................................ 199
   4.5  A Posteriori Error Estimate for the Lagrangian ........ 202
   4.6  Some Estimates of the Solution an Initial Boundary
        Value Problem for Hyperbolic Equation (4.9) ........... 210
   4.7  Frechet Derivatives of Solutions of State and
        Adjoint Problems ...................................... 216
   4.8  The Frechet Derivative of the Tikhonov Functional ..... 222
   4.9  Relaxation with Mesh Refinements ...................... 225
        4.9.1  The Space of Finite Elements ................... 226
        4.9.2  Minimizers on Subspaces ........................ 229
        4.9.3  Relaxation ..................................... 233
   4.10 From the Abstract Scheme to the Coefficient Inverse
        Problem 2.1 ........................................... 235
   4.11 A Posteriori Error Estimates for the Regularized
        Coefficient and the Relaxation Property of Mesh
        Refinements ........................................... 237
   4.12 Mesh Refinement Recommendations ....................... 241
   4.13 The Adaptive Algorithm ................................ 244
        4.13.1 The Algorithm In Brief ......................... 244
        4.13.2 The Algorithm .................................. 244
   4.14 Numerical Studies of the Adaptivity Technique ......... 245
        4.14.1 Reconstruction of a Single Cube ................ 246
        4.14.2 Scanning Acoustic Microscope ................... 248
   4.15 Performance of the Two-Stage Numerical Procedure in
        2D .................................................... 258
        4.15.1 Computations of the Forward Problem ............ 258
        4.15.2 The First Stage ................................ 261
        4.15.3 The Second Stage ............................... 264
   4.16 Performance of the Two-Stage Numerical Procedure in
        3D .................................................... 266
        4.16.1 The First Stage ................................ 275
        4.16.2 The Second Stage ............................... 277
   4.17 Numerical Study of the Adaptive Approximately
        Globally Convergent Algorithm ......................... 279
        4.17.1 Computations of the Forward Problem ............ 285
        4.17.2 Reconstruction by the Approximately Globally
               Convergent Algorithm ........................... 288
        4.17.3 The Adaptive Part .............................. 289
   4.18 Summary of Numerical Studies of Chapter 4 ............. 291
5  Blind Experimental Data .................................... 295
   5.1  Introduction .......................................... 295
   5.2  The Mathematical Model ................................ 297
   5.3  The Experimental Setup ................................ 298
   5.4  Data Simulations ...................................... 301
   5.5  State and Adjoint Problems for Experimental Data ...... 302
   5.6  Data Pre-Processing ................................... 304
        5.6.1  The First Stage of Data Immersing .............. 304
        5.6.2  The Second Stage of Data Immersing ............. 307
   5.7  Some Details of the Numerical Implementation of the
        Approximately ......................................... 309
        5.7.1 Stopping Rule for ............................... 311
   5.8  Reconstruction by the Approximately Globally
        Convergent Numerical Method ........................... 311
        5.8.1  Dielectric Inclusions and Their Positions ...... 311
        5.8.2  Tables and Images .............................. 312
        5.8.3  Accuracy of the Blind Imaging .................. 314
        5.8.4  Performance of a Modified Gradient Method ...... 316
   5.9  Performance of the Two-Stage Numerical Procedure ...... 319
        5.9.1  The First Stage ................................ 319
        5.9.2  The Third Stage of Data Immersing .............. 320
        5.9.3  Some Details of the Numerical Implementation
               of the Adaptivity .............................. 323
        5.9.4  Reconstruction Results for Cube Number 1 ....... 323
        5.9.5  Reconstruction Results for the Cube Number 2 ... 325
        5.9.6  Sensitivity to the Parameters α and β .......... 327
        5.9.7  Additional Effort for Cube Number 1 ............ 327
   5.10 Summary ............................................... 332
6  Backscattering Data ........................................ 335
   6.1  Introduction .......................................... 335
   6.2  Forward and Inverse Problems .......................... 337
   6.3  Laplace Transform ..................................... 339
   6.4  The Algorithm ......................................... 340
        6.4.1  Preliminaries .................................. 340
        6.4.2  The Sequence of Elliptic Equations ............. 342
        6.4.3  The Iterative Process .......................... 344
        6.4.4  The Quasi-Reversibility Method ................. 345
   6.5  Estimates for the QRM ................................. 346
   6.6  The Third Approximate Mathematical Model .............. 354
        6.6.1  Exact Solution ................................. 354
        6.6.2  The Third Approximate Mathematical Model ....... 356
   6.7  The Third Approximate Global Convergence Theorem ...... 358
   6.8  Numerical Studies ..................................... 367
        6.8.1  Main Discrepancies Between Convergence
               Analysis and Numerical Implementation .......... 367
        6.8.2  A Simplified Mathematical Model of Imaging
               of Plastic Land Mines .......................... 368
        6.8.3  Some Details of the Numerical Implementation ... 369
        6.8.4  Numerical Results .............................. 372
        6.8.5  Backscattering Without the QRM ................. 374
   6.9  Blind Experimental Data Collected in the Field ........ 376
        6.9.1  Introduction ................................... 378
        6.9.2  Data Collection and Imaging Goal ............... 379
        6.9.3  The Mathematical Model and the Approximately
               Globally Convergent Algorithm .................. 381
        6.9.4  Uncertainties .................................. 385
        6.9.5  Data Pre-processing ............................ 388
        6.9.6  Results of Blind Imaging ....................... 391
        6.9.7  Summary of Blind Imaging ....................... 392

References .................................................... 393
Index ......................................................... 401


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:52 2019. Размер: 16,665 bytes.
Посещение N 1537 c 18.09.2012