Preface ....................................................... vii
Chapter 1. Summability of Multiple Fourier Series ............... 1
1 Introduction ................................................. 1
2 Iterated Fejer Summability of Fourier Series ................. 2
3 Bochner-Riesz Summability of Fourier Series .................. 8
4 Abel Summability of Fourier Series .......................... 16
5 Gauss-Weierstrass Summability of Fourier Series ............. 29
6 Further Results and Comments ................................ 36
Chapter 2. Conjugate Multiple Fourier Series ................... 39
1 Introduction ................................................ 39
2 Abel Summability of Conjugate Series ........................ 48
3 Spherical Convergence of Conjugate Series ................... 56
4 The Cα-Condition ............................................ 66
5 An Application of the Cα-Condition .......................... 70
6 An Application of the Lp-Condition .......................... 74
7 Further Results and Comments ................................ 78
Chapter 3. Uniqueness of Multiple Trigonometric Series ......... 79
1 Uniqueness for Abel Summability ............................. 79
2 Uniqueness for Circular Convergence ......................... 96
3 Uniqueness, Number Theory, and Fractals .................... 102
4 Further Results and Comments ............................... 136
Chapter 4. Positive Definite Functions ........................ 139
1 Positive Definite Functions on SN-1 ........................ 139
2 Positive Definite Functions on TN .......................... 143
3 Positive Definite Functions on SN1-1 × ТN ................... 148
4 Further Results and Comments ............................... 156
Chapter 5. Nonlinear Partial Differential Equations ........... 159
1 Reaction-Diffusion Equations on the N-Torus ................ 159
2 Quasilinear Ellipticity on the N-Torus ..................... 186
3 Further Results and Comments ............................... 215
Chapter 6. The Stationary Navier-Stokes Equations ............. 219
1 Distribution Solutions ..................................... 219
2 Classical Solutions ........................................ 259
3 Further Results and Comments ............................... 271
Appendix А. Integrals and Identities .......................... 277
1 Integral Identities ........................................ 277
2 Estimates for Bessel Functions ............................. 281
3 Surface Spherical Harmonics ................................ 284
Appendix В. Real Analysis ..................................... 299
1 Convergence and Summability ................................ 299
2 Tauberian Limit Theorems ................................... 301
3 Distributions on the N-Torus .............................. 305
4 Hj(x) and the Cα-Condition ................................. 310
Appendix C. Harmonic and Subharmonic Functions ................ 315
1 Harmonic Functions ......................................... 315
2 Subharmonic Functions ...................................... 326
Bibliography .................................................. 331
Index ......................................................... 335
|