Prosperetti A. Advanced mathematics for applications (Cambridge; New York, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаProsperetti A. Advanced mathematics for applications. - Cambridge; New York: Cambridge University Press, 2011. - xviii, 724 p.: ill. - Ref.: p.699-706. - Ind.: p.707-724. - ISBN 978-0-521-51532-0; ISBN 978-0-521-73587-2
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ...................................................... xiii
To the reader .................................................. xv
List of tables ............................................... xvii

Part 0  General Remarks and  Basic Concepts ..................... l

1  The Classical Field Equations ................................ 3
   1.1  Vector fields ........................................... 3
   1.2  The fundamental equations ............................... 6
   1.3  Diffusion .............................................. 10
   1.4  Fluid mechanics ........................................ 12
   1.5  Electromagnetism ....................................... 14
   1.6  Linear elasticity ...................................... 16
   1.7  Quantum mechanics ...................................... 18
   1.8  Eigenfunction expansions: introduction ................. 19

2  Some Simple Preliminaries ................................... 27
   2.1  The method of eigenfunction expansions ................. 27
   2.2  Variation of parameters ................................ 30
   2.3  The "S-function" ....................................... 35
   2.4  The idea of Green's functions .......................... 39
   2.5  Power series solution .................................. 42

Part I  Applications ........................................... 51

3  Fourier Series: Applications ................................ 53
   3.1  Summary of useful relations ............................ 53
   3.2  The diffusion equation ................................. 58
   3.3  Waves on a string ...................................... 67
   3.4  Poisson equation in a square ........................... 68
   3.5  Helmholtz equation in a semi-infinite strip ............ 72
   3.6  Laplace equation in a disk ............................. 73
   3.7  The Poisson equation in a sector ....................... 77
   3.8  The quantum particle in a box: eigenvalues of the
        Laplacian .............................................. 78
   3.9  Elastic vibrations ..................................... 80
   3.10 A comment on the method of separation of variables ..... 82
   3.11 Other applications ..................................... 83
4  Fourier Transform: Applications ............................. 84
   4.1  Useful formulae for the exponential transform .......... 84
   4.2  One-dimensional Helmholtz equation ..................... 90
   4.3  Schrцdinger equation with a constant force ............. 93
   4.4  Diffusion in an infinite medium ........................ 95
   4.5  Wave equation ......................................... 100
   4.6  Laplace equation in a strip and in a half-plane ....... 107
   4.7  Example of an ill-posed problem ....................... 108
   4.8  The Hilbert transform and dispersion relations ........ 110
   4.9  Fredholm integral equation of the convolution type .... 112
   4.10 Useful formulae for the sine and cosine transforms .... 113
   4.11 Diffusion in a semi-infinite medium ................... 116
   4.12 Laplace equation in a quadrant ........................ 118
   4.13 Laplace equation in a semi-infinite strip ............. 120
   4.14 One-sided transform ................................... 121
   4.15 Other applications .................................... 122
5  Laplace Transform: Applications ............................ 123
   5.1  Summary of useful relations ........................... 123
   5.2  Ordinary differential equations ....................... 128
   5.3  Difference equations .................................. 133
   5.4  Differential-difference equations ..................... 136
   5.5  Diffusion equation .................................... 138
   5.6  Integral equations .................................... 144
   5.7  Other applications .................................... 145
6  Cylindrical Systems ........................................ 146
   6.1  Cylindrical coordinates ............................... 146
   6.2  Summary of useful relations ........................... 147
   6.3  Laplace equation in a cylinder ........................ 154
   6.4  Fundamental solution of the Poisson equation .......... 157
   6.5  Transient diffusion in a cylinder ..................... 159
   6.6  Formulae for the Hankel transform ..................... 162
   6.7  Laplace equation in a half-space ...................... 163
   6.8  Axisymmetric waves on a liquid surface ................ 166
   6.9  Dual integral equations ............................... 168
7  Spherical Systems .......................................... 170
   7.1  Spherical polar coordinates ........................... 171
   7.2  Spherical harmonics: useful relations ................. 173
   7.3  A sphere in a uniform field ........................... 178
   7.4  Half-sphere on a plane ................................ 179
   7.5  General solution of the Laplace and Poisson
        equations ............................................. 181
   7.6  The Poisson equation in free space .................... 182
   7.7  General solution of the biharmonic equation ........... 183
   7.8  Exterior Poisson formula for the Dirichlet problem .... 184
   7.9  Point source near a sphere ............................ 185
   7.10 A domain perturbation problem ......................... 187
   7.11 Conical boundaries .................................... 191
   7.12 Spherical Bessel functions: useful relations .......... 194
   7.13 Fundamental solution of the Helmholtz equation ........ 196
   7.14 Scattering of scalar waves ............................ 200
   7.15 Expansion of a plane vector wave ...................... 203
   7.16 Scattering of electromagnetic waves ................... 205
   7.17 The elastic sphere .................................... 207
   7.18 Toroidal-poloidal decomposition and viscous flow ...... 208

Part II  Essential Tools ...................................... 213

8  Sequences and Series ....................................... 215
   8.1  Numerical sequences and series ........................ 215
   8.2  Sequences of functions ................................ 219
   8.3  Series of functions ................................... 224
   8.4  Power series .......................................... 228
   8.5  Other definitions of the sum of a series .............. 230
   8.6  Double series ......................................... 232
   8.7  Practical summation methods ........................... 234
9  Fourier Series: Theory ..................................... 242
   9.1  The Fourier exponential basis functions ............... 242
   9.2  Fourier series in exponential form .................... 244
   9.3  Point-wise convergence of the Fourier series .......... 245
   9.4  Uniform and absolute convergence ...................... 248
   9.5  Behavior of the coefficients .......................... 249
   9.6  Trigonometric form .................................... 252
   9.7  Sine and cosine series ................................ 253
   9.8  Term-by-term integration and differentiation .......... 256
   9.9  Change of scale ....................................... 258
   9.10 The Gibbs phenomenon .................................. 261
   9.11 Other modes of convergence ............................ 263
   9.12 The conjugate series .................................. 265
10 The Fourier and Hankel Transforms .......................... 266
   10.1 Heuristic motivation .................................. 266
   10.2 The exponential Fourier transform ..................... 268
   10.3 Operational formulae .................................. 270
   10.4 Uncertainty relation .................................. 271
   10.5 Sine and cosine transforms ............................ 272
   10.6 One-sided and complex Fourier transform ............... 274
   10.7 Integral asymptotics .................................. 276
   10.8 Asymptotic behavior ................................... 281
   10.9 The Hankel transform .................................. 282
11 The Laplace Transform ...................................... 285
   11.1 Direct and inverse Laplace transform .................. 285
   11.2 Operational formulae .................................. 287
   11.3 Inversion of the Laplace transform .................... 291
   11.4 Behavior for small and large .......................... 295
12 The Bessel Equation ........................................ 302
   12.1 Introduction .......................................... 302
   12.2 The Bessel functions .................................. 304
   12.3 Spherical Bessel functions ............................ 309
   12.4 Modified Bessel functions ............................. 310
   12.5 The Fourier-Bessel and Dini series .................... 312
   12.6 Other series expansions ............................... 315
13 The Legendre Equation ...................................... 317
   13.1 Introduction .......................................... 317
   13.2 The Legendre equation ................................. 318
   13.3 Legendre polynomials .................................. 319
   13.4 Expansion in series of Legendre polynomials ........... 324
   13.5 Legendre functions .................................... 326
   13.6 Associated Legendre functions ......................... 328
   13.7 Conical boundaries .................................... 330
   13.8 Extensions ............................................ 332
   13.9 Orthogonal polynomials ................................ 334
14 Spherical Harmonics ........................................ 337
   14.1 Introduction .......................................... 337
   14.2 Spherical harmonics ................................... 338
   14.3 Expansion in series of spherical harmonics ............ 343
   14.4 Vector harmonics ...................................... 345
15 Green's Functions: Ordinary Differential Equations ......... 348
   15.1 Two-point boundary value problems ..................... 348
   15.2 The regular eigenvalue Sturm-Liouville problem ........ 359
   15.3 The eigenfunction expansion ........................... 366
   15.4 Singular Sturm-Liouville problems ..................... 375
   15.5 Initial-value problem ................................. 388
   15.6 A broader perspective on Green's functions ............ 392
   15.7 Modified Green's function ............................. 396
16 Green's Functions: Partial Differential Equations .......... 400
   16.1 Poisson equation ...................................... 400
   16.2 The diffusion equation ................................ 410
   16.3 Wave equation ......................................... 415
17 Analytic Functions ......................................... 418
   17.1 Complex algebra ....................................... 418
   17.2 Analytic functions .................................... 421
   17.3 Integral of an analytic function ...................... 423
   17.4 The Taylor and Laurent series ......................... 432
   17.5 Analytic continuation I ............................... 436
   17.6 Multi-valued functions ................................ 446
   17.7 Riemann surfaces ...................................... 453
   17.8 Analytic continuation II .............................. 455
   17.9 Residues and applications ............................. 459
   17.10 Conformal mapping .................................... 471
18 Matrices and Finite-Dimensional Linear Spaces .............. 491
   18.1 Basic definitions and properties ...................... 491
   18.2 Determinants .......................................... 496
   18.3 Matrices and linear operators ......................... 499
   18.4 Change of basis ....................................... 503
   18.5 Scalar product ........................................ 505
   18.6 Eigenvalues and eigenvectors .......................... 509
   18.7 Simple, normal and Hermitian matrices ................. 511
   18.8 Spectrum and singular values .......................... 515
   18.9 Projections ........................................... 519
   18.10 Defective matrices ................................... 522
   18.11 Functions of matrices ................................ 528
   18.12 Systems of ordinary differential equations ........... 530

Part III  Some Advanced Tools ................................. 535

19 Infinite-Dimensional Spaces ................................ 537
   19.1 Linear vector spaces .................................. 537
   19.2 Normed spaces ......................................... 541
   19.3 Hilbert spaces ........................................ 548
   19.4 Orthogonality ......................................... 554
   19.5 Sobolev spaces ........................................ 560
   19.6 Linear functional ..................................... 563
20 Theory of Distributions .................................... 568
   20.1 Introduction .......................................... 568
   20.2 Test functions and distributions ...................... 569
   20.3 Examples .............................................. 572
   20.4 Operations on distributions ........................... 575
   20.5 The distributional derivative ......................... 580
   20.6 Sequences of distributions ............................ 584
   20.7 Multi-dimensional distributions ....................... 588
   20.8 Distributions and analytic functions .................. 591
   20.9 Convolution ........................................... 593
   20.10 The Fourier transform of distributions ............... 595
   20.11 The Fourier series of distributions .................. 600
   20.12 Laplace transform of distributions ................... 605
   20.13 Miscellaneous applications ........................... 608
   20.14 The Hilbert transform ................................ 616
21 Linear Operators in Infinite-Dimensional Spaces ............ 620
   21.1 Linear operators ...................................... 621
   21.2 Bounded operators ..................................... 623
   21.3 Compact operators ..................................... 636
   21.4 Unitary operators ..................................... 644
   21.5 The inverse of an operator ............................ 647
   21.6 Closed operators and their adjoint .................... 649
   21.7 Solvability conditions and the Fredholm alternative ... 657
   21.8 Invariant subspaces and reduction ..................... 660
   21.9 Resolvent and spectrum ................................ 661
   21.10 Analytic properties of the resolvent ................. 669
   21.11 Spectral theorems .................................... 671

Appendix ...................................................... 678
   A.l  Sets .................................................. 678
   A.2  Measure ............................................... 681
   A.3  Functions ............................................. 682
   A.4  Integration ........................................... 686
   A.5  Curves ................................................ 696
   A.6  Bounds and limits ..................................... 697

References .................................................... 699
Index ......................................................... 707


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:50 2019. Размер: 19,369 bytes.
Посещение N 1663 c 04.09.2012