Loehr N.A. Bijective combinatorics (Boca Raton; London; New York, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаLoehr N.A. Bijective combinatorics. - Boca Raton; London; New York: CRC Press, 2011. - xxii, 590 p.: ill. - (Discrete mathematics and its applications). - Bibliogr.: p.569-576. - Ind.: p.577-590. - ISBN 978-1-4398-4884-5
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ...................................................... xiii
Epigraph ....................................................... xv
Introduction ................................................. xvii
1  Basic Counting ............................................... 1
   1.1  Review of Set Theory .................................... 1
   1.2  Sum Rule ................................................ 2
   1.3  Product Rule ............................................ 3
   1.4  Words, Permutations, and Subsets ........................ 4
   1.5  Functions ............................................... 6
   1.6  Bijections, Cardinality, and Counting ................... 9
   1.7  Subsets, Binary Words, and Compositions ................ 11
   1.8  Subsets of a Fixed Size ................................ 12
   1.9  Anagrams ............................................... 14
   1.10 Lattice Paths .......................................... 16
   1.11 Multisets .............................................. 19
   1.12 Probability ............................................ 21
   1.13 Games of Chance ........................................ 24
   1.14 Conditional Probability and Independence ............... 29
   Summary ..................................................... 32
   Exercises ................................................... 33
2  Combinatorial Identities and Recursions ..................... 41
   2.1  Generalized Distributive Law ........................... 41
   2.2  Multinomial and Binomial Theorems ...................... 44
   2.3  Combinatorial Proofs ................................... 47
   2.4  Recursions ............................................. 51
   2.5  Recursions for Multisets and Anagrams .................. 55
   2.6  Recursions for Lattice Paths ........................... 57
   2.7  Catalan Recursions ..................................... 61
   2.8  Integer Partitions ..................................... 65
   2.9  Set Partitions ......................................... 71
   2.10 Surjections ............................................ 74
   2.11 Stirling Numbers and Rook Theory ....................... 75
   2.12 Linear Algebra Review .................................. 79
   2.13 Stirling Numbers and Polynomials ....................... 80
   2.14 Combinatorial Proofs of Polynomial Identities .......... 84
   Summary ..................................................... 86
   Exercises ................................................... 89
3  Counting Problems in Graph Theory ........................... 97
   3.1  Graphs and Digraphs .................................... 97
   3.2  Walks and Matrices ..................................... 99
   3.3  DAGs and Nilpotent Matrices ........................... 102
   3.4  Vertex Degrees ........................................ 105
   3.5  Functional Digraphs ................................... 107
   3.6  Cycle Structure of Permutations ....................... 109
   3.7  Counting Rooted Trees ................................. 111
   3.8  Connectedness and Components .......................... 113
   3.9  Forests ............................................... 116
   3.10 Trees ................................................. 117
   3.11 Counting Trees ........................................ 119
   3.12 Pruning Maps .......................................... 121
   3.13 Ordered Trees and Terms ............................... 123
   3.14 Ordered Forests and Lists of Terms .................... 125
   3.15 Graph Coloring ........................................ 127
   3.16 Spanning Trees ........................................ 131
   3.17 Matrix-Tree Theorem ................................... 134
   3.18 Eulerian Tours ........................................ 137
   Summary .................................................... 140
   Exercises .................................................. 143
4  Inclusion-Exclusion and Related Techniques ................. 153
   4.1  Involutions ........................................... 153
   4.2  The Inclusion-Exclusion Formula ....................... 156
   4.3  More Proofs of Inclusion-Exclusion .................... 158
   4.4  Applications of the Inclusion-Exclusion Formula ....... 160
   4.5  Derangements .......................................... 163
   4.6  Coefficients of Chromatic Polynomials ................. 165
   4.7  Classical Möbius Inversion ............................ 165
   4.8  Partially Ordered Sets ................................ 168
   4.9  Möbius Inversion for Posets ........................... 169
   4.10 Product Posets ........................................ 172
   Summary .................................................... 173
   Exercises .................................................. 175
5  Ranking and Unranking ...................................... 181
   5.1  Ranking, Unranking, and Related Problems .............. 181
   5.2  Bijective Sum Rule .................................... 182
   5.3  Bijective Product Rule ................................ 183
   5.4  Ranking Words ......................................... 187
   5.5  Ranking Permutations .................................. 189
   5.6  Ranking Subsets ....................................... 190
   5.7  Ranking Anagrams ...................................... 192
   5.8  Ranking Integer Partitions ............................ 193
   5.9  Ranking Set Partitions ................................ 194
   5.10 Ranking Card Hands .................................... 196
   5.11 Ranking Dyck Paths .................................... 199
   5.12 Ranking Trees ......................................... 201
   5.13 Successors and Predecessors ........................... 201
   5.14 Random Selection ...................................... 203
   Summary .................................................... 205
   Exercises .................................................. 206
6  Counting Weighted Objects .................................. 213
   6.1  Weighted Sets ......................................... 213
   6.2  Inversions ............................................ 216
   6.3  Weight-Preserving Bijections .......................... 217
   6.4  Sum and Product Rules for Weighted Sets ............... 218
   6.5  Inversions and Quantum Factorials ..................... 220
   6.6  Descents and Major Index .............................. 221
   6.7  Quantum Binomial Coefficients ......................... 223
   6.8  Quantum Multinomial Coefficients ...................... 227
   6.9  Foata's Map ........................................... 230
   6.10 Quantum Catalan Numbers ............................... 233
   Summary .................................................... 235
   Exercises .................................................. 237
7  Formal Power Series ........................................ 243
   7.1  The Ring of Formal Power Series ....................... 244
   7.2  Finite Products and Powers of Formal Series ........... 247
   7.3  Formal Polynomials .................................... 248
   7.4  Order of Formal Power Series .......................... 251
   7.5  Formal Limits, Infinite Sums, and Infinite Products ... 252
   7.6  Multiplicative Inverses in K[x] and K[[x]] ............ 255
   7.7  Formal Laurent Series ................................. 257
   7.8  Formal Derivatives .................................... 259
   7.9  Composition of Polynomials ............................ 261
   7.10 Composition of Formal Power Series .................... 262
   7.11 Generalized Binomial Expansion ........................ 265
   7.12 Generalized Powers of Formal Series ................... 268
   7.13 Partial Fraction Expansions ........................... 270
   7.14 Application to Recursions ............................. 274
   7.15 Formal Exponentiation and Formal Logarithms ........... 277
   7.16  Multivariable Polynomials and Formal Series .......... 279
   Summary .................................................... 281
   Exercises .................................................. 284
8  The Combinatorics of Formal Power Series ................... 291
   8.1  Sum Rule for Infinite Weighted Sets ................... 291
   8.2  Product Rule for Infinite Weighted Sets ............... 292
   8.3  Generating Functions for Trees ........................ 294
   8.4  Compositional Inversion Formulas ...................... 296
   8.5  Generating Functions for Partitions ................... 298
   8.6  Partition Bijections .................................. 300
   8.7  Euler's Pentagonal Number Theorem ..................... 303
   8.8  Stirling Numbers of the First Kind .................... 306
   8.9  Stirling Numbers of the Second Kind ................... 307
   8.10  The Exponential Formula .............................. 309
   Summary .................................................... 311
   Exercises .................................................. 313
9  Permutations and Group Actions ............................. 319
   9.1  Definition and Examples of Groups ..................... 319
   9.2  Basic Properties of Groups ............................ 321
   9.3  Notation for Permutations ............................. 322
   9.4  Inversions and Sign ................................... 325
   9.5  Determinants .......................................... 329
   9.6  Multilinearity and Laplace Expansions ................. 331
   9.7  Cauchy-Binet Formula .................................. 334
   9.8  Subgroups ............................................. 336
   9.9  Automorphism Groups of Graphs ......................... 338
   9.10 Group Homomorphisms ................................... 341
   9.11 Group Actions ......................................... 344
   9.12 Permutation Representations ........................... 347
   9.13 Stable Subsets and Orbits ............................. 349
   9.14 Cosets ................................................ 351
   9.15 The Size of an Orbit .................................. 354
   9.16 Conjugacy Classes in Sn ............................... 356
   9.17 Applications of the Orbit Size Formula ................ 357
   9.18 The Number of Orbits .................................. 359
   9.19 Polya's Formula ....................................... 362
   Summary .................................................... 364
   Exercises .................................................. 367
10 Tableaux and Symmetric Polynomials ......................... 377
   10.1 Partition Diagrams and Skew Shapes .................... 377
   10.2 Tableaux .............................................. 379
   10.3 Schur Polynomials ..................................... 380
   10.4 Symmetric Polynomials ................................. 383
   10.5 Homogeneous Symmetric Polynomials ..................... 385
   10.6 Symmetry of Schur Polynomials ......................... 387
   10.7 Orderings on Partitions ............................... 389
   10.8 Schur Bases ........................................... 392
   10.9 Tableau Insertion ..................................... 394
   10.10 Reverse Insertion .................................... 397
   10.11 Bumping Comparison Theorem ........................... 399
   10.12 Pieri Rules .......................................... 401
   10.13 Schur Expansion of hα ................................ 403
   10.14 Schur Expansion of eα ................................ 406
   10.15 Algebraic Independence ............................... 407
   10.16 Power-Sum Symmetric Polynomials ...................... 408
   10.17 Relations between e's and h's ........................ 410
   10.18 Generating Functions for e's and h's ................. 411
   10.19 Relations between p's, e's, and h's .................. 413
   10.20 Power-Sum Expansion of hn and en ..................... 414
   10.21 The Involution ω ..................................... 417
   10.22 Permutations and Tableaux ............................ 419
   10.23 Words and Tableaux ................................... 424
   10.24 Matrices and Tableaux ................................ 427
   10.25 Cauchy Identities .................................... 429
   10.26 Dual Bases ........................................... 431
   Summary .................................................... 433
   Exercises .................................................. 436
11 Abaci and Antisymmetric Polynomials ........................ 445
   11.1 Abaci and Integer Partitions .......................... 445
   11.2 Jacobi Triple Product Identity ........................ 447
   11.3 Ribbons and k-Cores ................................... 448
   11.4 k-Quotients and Hooks ................................. 454
   11.5 Antisymmetric Polynomials ............................. 457
   11.6 Labeled Abaci ......................................... 460
   11.7 Pieri Rule for pk ..................................... 462
   11.8 Pieri Rule for ek ..................................... 465
   11.9 Pieri Rule for hk ..................................... 467
   11.10 Antisymmetric Polynomials and Schur Polynomials ...... 469
   11.11 Rim-Hook Tableaux .................................... 470
   11.12 Abaci and Tableaux ................................... 474
   11.13 Skew Schur Polynomials ............................... 477
   11.14 Jacobi-Trudi Formulas ................................ 478
   11.15 Inverse Kostka Matrix ................................ 482
   11.16 Schur Expansion of Skew Schur Polynomials ............ 485
   11.17 Products of Schur Polynomials ........................ 489
   Summary .................................................... 491
   Exercises .................................................. 493
12 Additional Topics .......................................... 497
   12.1 Cyclic Shifting of Paths .............................. 497
   12.2 Chung-Feller Theorem .................................. 499
   12.3 Rook-Equivalence of Ferrers Boards .................... 503
   12.4 Parking Functions ..................................... 505
   12.5 Parking Functions and Trees ........................... 507
   12.6 Möbius Inversion and Field Theory ..................... 511
   12.7 Quantum Binomial Coefficients and Subspaces ........... 513
   12.8 Tangent and Secant Numbers ............................ 517
   12.9 Tournaments and the Vandermonde Determinant ........... 520
   12.10 Hook-Length Formula .................................. 523
   12.11 Knuth Equivalence .................................... 527
   12.12 Pfaffians and Perfect Matchings ...................... 533
   12.13 Domino Tilings of Rectangles ......................... 539
   Summary .................................................... 545
   Exercises .................................................. 547
Answers and Hints to Selected Exercises ....................... 555
Bibliography .................................................. 569
Index ......................................................... 577


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:50 2019. Размер: 19,173 bytes.
Посещение N 1461 c 04.09.2012