Harrison M. Mathematics for economics and finance (London; New York, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаHarrison M. Mathematics for economics and finance / M.Harrison, P.Waldron. - London; New York: Routledge, 2011. - xxiii, 520 p.: ill. - Ref.: p.501-504. - Ind.: p.505-520. - ISBN 978-0-415-57303-0
 

Оглавление / Contents
 
   List of figures ............................................. ix
   List of tables .............................................. xi
   Foreword .................................................. xiii
   Preface ..................................................... xv
   Acknowledgements .......................................... xvii
   List of abbreviations .................................... xviii
   Notation and preliminaries ................................. xix

Part I  MATHEMATICS

   Introduction ................................................. 3
1  Systems of linear equations and matrices ..................... 5
   1.1  Introduction ............................................ 5
   1.2  Linear equations and examples ........................... 5
   1.3  Matrix operations ...................................... 11
   1.4  Rules of matrix algebra ................................ 14
   1.5  Some special types of matrix and associated rules ...... 15
2  Determinants ................................................ 30
   2.1  Introduction ........................................... 30
   2.2  Preliminaries .......................................... 30
   2.3  Definition and properties .............................. 31
   2.4  Co-factor expansions of determinants ................... 34
   2.5  Solution of systems of equations ....................... 39
3  Eigenvalues and eigenvectors ................................ 53
   3.1  Introduction ........................................... 53
   3.2  Definitions and illustration ........................... 53
   3.3  Computation ............................................ 54
   3.4  Unit eigenvalues ....................................... 58
   3.5  Similar matrices ....................................... 59
   3.6  Diagonalization ........................................ 59
4  Conic sections, quadratic forms and definite matrices ....... 71
   4.1  Introduction ........................................... 71
   4.2  Conic sections ......................................... 71
   4.3  Quadratic forms ........................................ 76
   4.4  Definite matrices ...................................... 77
5  Vectors and vector spaces ................................... 88
   5.1  Introduction ........................................... 88
   5.2  Vectors in 2-space and 3-space ......................... 88
   5.3  n-Dimensional Euclidean vector spaces ................. 100
   5.4  General vector spaces ................................. 101
6  Linear transformations ..................................... 128
   6.1  Introduction .......................................... 128
   6.2  Definitions and illustrations ......................... 128
   6.3  Properties of linear transformations .................. 131
   6.4  Linear transformations from fig.1n to fig.1m .................. 137
   6.5  Matrices of linear transformations .................... 138
7  Foundations for vector calculus ............................ 143
   7.1  Introduction .......................................... 143
   7.2  Affine combinations, sets, hulls and functions ........ 143
   7.3  Convex combinations, sets, hulls and functions ........ 146
   7.4  Subsets of n-dimensional spaces ....................... 148
   7.5  Basic topology ........................................ 154
   7.6  Supporting and separating hyperplane theorems ......... 157
   7.7  Visualizing functions of several variables ............ 158
   7.8  Limits and continuity ................................. 159
   7.9  Fundamental theorem of calculus ....................... 162
8  Difference equations ....................................... 167
   8.1  Introduction .......................................... 167
   8.2  Definitions and classifications ....................... 167
   8.3  Linear, first-order difference equations .............. 172
   8.4  Linear, autonomous, higher-order difference 
        equations ............................................. 181
   8.5  Systems of linear difference equations ................ 189
9  Vector calculus ............................................ 202
   9.1  Introduction .......................................... 202
   9.2  Partial and total derivatives ......................... 202
   9.3  Chain rule and product rule ........................... 207
   9.4  Elasticities .......................................... 211
   9.5  Directional derivatives and tangent hyperplanes ....... 213
   9.6  Taylor's theorem: deterministic version ............... 217
   9.7  Multiple integration .................................. 224
   9.8  Implicit function theorem ............................. 236
10 Convexity and optimization ................................. 244
   10.1 Introduction .......................................... 244
   10.2 Convexity and concavity ............................... 244
   10.3 Unconstrained optimization ............................ 257
   10.4 Equality-constrained optimization ..................... 261
   10.5 Inequality-constrained optimization ................... 270
   10.6 Duality ............................................... 278
   
Part II APPLICATIONS Introduction

11 Macroeconomic applications ................................. 289
   11.1 Introduction .......................................... 289
   11.2 Dynamic linear macroeconomic models ................... 289
   11.3 Input-output analysis ................................. 294
12 Single-period choice under certainty ....................... 299
   12.1 Introduction .......................................... 299
   12.2 Definitions ........................................... 299
   12.3 Axioms ................................................ 301
   12.4 The consumer's problem and its dual ................... 307
   12.5 General equilibrium theory ............................ 316
   12.6 Welfare theorems ...................................... 323
13 Probability theory ......................................... 334
   13.1 Introduction .......................................... 334
   13.2 Sample spaces and random variables .................... 334
   13.3 Applications .......................................... 338
   13.4 Vector spaces of random variables ..................... 343
   13.5 Random vectors ........................................ 345
   13.6 Expectations and moments .............................. 347
   13.7 Multivariate normal distribution ...................... 351
   13.8 Estimation and forecasting ............................ 354
   13.9 Taylor's theorem: stochastic version .................. 355
   13.10 Jensen's inequality .................................. 356
14 Quadratic programming and econometric applications ......... 371
   14.1 Introduction .......................................... 371
   14.2 Algebra and geometry of ordinary least squares ........ 371
   14.3 Canonical quadratic programming problem ............... 377
   14.4 Stochastic difference equations ....................... 382
15 Multi-period choice under certainty ........................ 394
   15.1 Introduction .......................................... 394
   15.2 Measuring rates of return ............................. 394
   15.3 Multi-period general equilibrium ...................... 400
   15.4 Term structure of interest rates ...................... 401
16 Single-period choice under uncertainty ..................... 415
   16.1 Introduction .......................................... 415
   16.2 Motivation ............................................ 415
   16.3 Pricing state-contingent claims ....................... 416
   16.4 The expected-utility paradigm ......................... 423
   16.5 Risk aversion ......................................... 429
   16.6 Arbitrage, risk neutrality and the efficient markets
        hypothesis ............................................ 434
   16.7 Uncovered interest rate parity: Siegel's paradox
        revisited ............................................. 436
   16.8 Mean-variance paradigm ................................ 440
   16.9 Other non-expected-utility approaches ................. 442
17 Portfolio theory ........................................... 448
   17.1 Introduction .......................................... 448
   17.2 Preliminaries ......................................... 448
   17.3 Single-period portfolio choice problem ................ 450
   17.4 Mathematics of the portfolio frontier ................. 457
   17.5 Market equilibrium and the capital asset pricing
        model ................................................. 478
   17.6 Multi-currency considerations ......................... 487

   Notes ...................................................... 493
   References ................................................. 501
   Index ...................................................... 505


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:50 2019. Размер: 12,864 bytes.
Посещение N 1268 c 04.09.2012