Geometric representation theory and extended affine Lie algebras (Providence, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаGeometric representation theory and extended affine Lie algebras / ed. by E.Neher, A.Savage, W.Wang. - Providence: American Mathematical Society; Toronto: The Fields Institute for Research in Mathematical Sciences, 2011. - vii, 213 p.: ill. - (Fields Institute communications; 59). - Bibliogr.: p.199-207. - Ind.: p.209-213. - ISBN 978-0-8218-5237-8
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ......................................................... v

Chapter 1. Geometric Constructions of the Irreducible
           Representations of GLn
           Joel Kamnitzer ....................................... 1
Introduction .................................................... 1
1.1  Representation theory of GLn ............................... 2
1.2  Borel-Weil theory .......................................... 6
1.3  Ginzburg construction ...................................... 9
1.4  Geometric Satake correspondence ........................... 12
1.5  Geometric skew Howe duality ............................... 15

Chapter 2. Introduction to Crystal Bases
           Seok-Jin Kang ....................................... 19
Introduction ................................................... 19
2.1  Lie algebras .............................................. 20
2.2  Kac-Moody algebras ........................................ 23
2.3  Quantum groups ............................................ 26
2.4  Crystal bases ............................................. 28
2.5  Abstract crystals ......................................... 31
2.6  Perfect crystals .......................................... 33
2.7  Combinatorics of Young walls .............................. 38

Chapter 3. Geometric Realizations of Crystals
           Alistair Savage ..................................... 45
Introduction ................................................... 45
3.1  Motivating examples ....................................... 46
3.2  Quivers ................................................... 50
3.3  The Lusztig quiver variety ................................ 55
3.4  The lagrangian Nakajima quiver variety .................... 58
3.5  Connections to combinatorial realizations of crystal
     graphs .................................................... 63

Chapter 4. Nilpotent Orbits and Finite W-Algebras
           Weiqiang Wang ....................................... 71
Introduction ................................................... 71
4.1  Nilpotent orbits, Dynkin, and good fig.6-gradings ............. 74
4.2  Definitions of W-algebras ................................. 78
4.3  Quantization of the Slodowy slices ........................ 82
4.4  An equivalence of categories .............................. 86
4.5  Good fig.6-gradings in type A ................................. 89
4.6  W-algebras and independence of good gradings .............. 92
4.7  Higher level Schur duality ................................ 96
4.8  W-(super)algebras in positive characteristic .............. 99
4.9  Further work and open problems ........................... 103

Chapter 5. Extended Affine Lie Algebras - An Introduction
           to Their Structure Theory
           Erhard Neher ....................................... 107
Introduction .................................................. 107
5.1  Affine Lie algebras and some generalizations ............. 109
5.2  Extended affine Lie algebras: Definition and first 
     examples ................................................. 120
5.3  The structure of the roots of an EALA .................... 129
5.4  The core and centreless core of an EALA .................. 144
5.5  The construction of all EALAs ............................ 156

Chapter 6. Representations of Affine and Toroidal Lie 
           Algebras
           Vyjayanthi Chari ................................... 169
Introduction .................................................. 169
6.1  Simple Lie algebras ...................................... 170
6.2  Affine Lie algebras ...................................... 176
6.3  Affine Lie algebras integrable representations and
     integral forms ........................................... 180
6.4  Finite-dimensional modules for loop algebras and their
     generalizations .......................................... 183
6.5  Weyl modules, restricted Kirillov-Reshetikhin and
     beyond ................................................... 187
6.6  Koszul algebras, quivers, and highest weight 
     categories ............................................... 191
Bibliography .................................................. 199
Index ......................................................... 209


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:50 2019. Размер: 8,230 bytes.
Посещение N 1415 c 04.09.2012