Chalendar I. Modern approaches to the invariant-subspace problem (Cambridge; New York, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаChalendar I. Modern approaches to the invariant-subspace problem / I.Chalendar, J.R.Partington. - Cambridge; New York: Cambridge University Press, 2011. - xi, 285 p.: ill. - (Cambridge tracts in mathematics; 188). - Ref.: p.269-279. - Ind.: p.281-285. - ISBN 978-1-107-01051-2
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
   Preface ..................................................... ix
1  Background ................................................... 1
   1.1  Functional analysis ..................................... 1
        1.1.1  Weak topology .................................... 1
        1.1.2  Hahn-Banach theorem .............................. 3
        1.1.3  Stone-Weierstrass theorem ........................ 4
        1.1.4  Banach-Steinhaus theorem ......................... 5
        1.1.5  Complex measures ................................. 6
        1.1.6  Riesz representation theorem .................... 11
        1.1.7  Geometry of Banach spaces ....................... 13
   1.2  Operator theory ........................................ 14
        1.2.1  Basic definitions and spectral properties ....... 14
        1.2.2  Wold decomposition of an isometry ............... 20
        1.2.3  Riesz-Dunford functional calculus ............... 21
   1.3  The Poisson kernel ..................................... 22
   1.4  Hardy spaces ........................................... 23
        1.4.1  Inner and outer functions ....................... 25
        1.4.2  Consequences of the inner-outer factorization ... 28
        1.4.3  The theorems of Beurling and Wiener ............. 30
        1.4.4  The disc algebra ................................ 31
        1.4.5  Reproducing kernels, Riesz bases and Carleson
               sequences ....................................... 31
        1.4.6  Functions of bounded mean oscillation ........... 34
        1.4.7  The Hilbert transform on the unit circle ........ 35
   1.5  Number Theory .......................................... 35
2  The operator-valued Poisson kernel and its applications ..... 37
   2.1  The operator-valued Poisson kernel ..................... 37
   2.2  The H functional calculus for absolutely continuous
        ρ-contractions ......................................... 43
   2.3  H functional calculus in a complex Banach space ....... 46
   2.4  Absolutely continuous elementary spectral measures ..... 50
   Exercises ................................................... 53
   Comments .................................................... 54
3  Properties (fig.4n,m) and factorization of integrable
   functions ................................................... 57
   3.1  The basis of the S. Brown method ....................... 57
        3.1.1  The starting point .............................. 57
        3.1.2  The class fig.4 ..................................... 62
        3.1.3  Classes fig.4n,m .................................... 63
   3.2  Factorization of log-integrable functions .............. 67
   3.3  Applications in harmonic analysis ...................... 81
   3.4  Subnormal operators .................................... 86
        3.4.1  Borelian functional calculus for normal
               operators ....................................... 86
        3.4.2  Invariant subspaces for subnormal operators ..... 87
   3.5  Surjectivity of continuous bilinear mapping ............ 92
        3.5.1  A sufficient condition for property (fig.4fig.50) ....... 92
        3.5.2  A sufficient condition for property (fig.41,fig.50) ..... 96
   Exercises ................................................... 99
   Comments ................................................... 100
4  Polynomially bounded operators with rich spectrum .......... 103
   4.1  Apostol's theorem ..................................... 103
   4.2  C2(fig.3) functional calculus and the Colojoară-Foias,
        theorem ............................................... 107
        4.2.1  Operators with a C2(fig.3) functional calculus ..... 107
        4.2.2  The Colojoară-Foiaş, theorem ................... 110
   4.3  Zenger's theorem ...................................... 111
        4.3.1  Zenger's theorem and a factorization result .... 112
        4.3.2  A stronger version of Zenger's theorem ......... 114
   4.4  Carleson's interpolation theorem ...................... 118
   4.5  Approximation using Apostol sets ...................... 123
        4.5.1  Approximation of integrable non-negative
               functions ...................................... 123
        4.5.2  Approximate eigenvalues ........................ 128
   4.6  Invariant subspace results ............................ 129
        Exercises  ............................................ 137
        Comments .............................................. 138
5  Beurling algebras .......................................... 141
   5.1  Properties of Beurling algebras ....................... 142
   5.2  Theorems of Wermer and Atzmon ......................... 146
   5.3  Bishop operators ...................................... 152
        5.3.1  Davie's functional calculus .................... 152
        5.3.2  The point spectrum ............................. 156
   5.4  Rational Bishop operators ............................. 160
        5.4.1  Cyclic vectors ................................. 161
        5.4.2  The lattice of invariant subspaces ............. 163
   Exercises .................................................. 167
   Comments ................................................... 167
6  Applications of a fixed-point theorem ...................... 169
   6.1  Operators commuting with compact operators ............ 169
   6.2  Essentially self-adjoint operators .................... 171
        6.2.1  Preliminaries .................................. 171
        6.2.2  Application to invariant subspaces ............. 177
  Exercises ................................................... 180
  Comments .................................................... 181
7  Minimal vectors ............................................ 183
   7.1  The basic definitions ................................. 183
   7.2  Minimal vectors in Hilbert space ...................... 185
   7.3  A general extremal problem  ........................... 186
        7.3.1  Approximation in Hilbert spaces ................ 187
        7.3.2  Approximation in reflexive Banach spaces ....... 189
   7.4  Application to hyperinvariant subspaces ............... 192
        7.4.1  The main theorem ............................... 192
        7.4.2  Compact operators .............................. 195
        7.4.3  Weighted composition operators ................. 196
        7.4.4  Weighted shifts ................................ 205
        7.4.5  Multiplication operators on Lp spaces .......... 208
   Exercises .................................................. 211
   Comments ................................................... 211
8  Universal operators ........................................ 213
   8.1  Construction of universal models ...................... 213
   8.2  Bilateral weighted shifts ............................. 217
   8.3  Composition operators ................................. 220
        8.3.1  Universality of composition operators .......... 220
        8.3.2  Minimal subspaces and eigenfunctions ........... 224
   Exercises .................................................. 228
   Comments ................................................... 230
9  Moment sequences and binomial sums ......................... 233
   9.1  Moment sequences ...................................... 233
   9.2  Operators on sequence spaces .......................... 239
   9.3  Binomial sums ......................................... 241
        9.3.1  Proof of Theorem 9.3.1 ......................... 242
        9.3.2  A technical refinement ......................... 244
        9.3.3  Application to Banach algebras and invariant
               subspaces ...................................... 248
   Exercises .................................................. 251
   Comments ................................................... 252
10 Positive and strictly-singular operators ................... 255
   10.1 Ordered spaces and positive operators ................. 255
   10.2 Invariant subspaces for positive operators ............ 257
   10.3 Strictly singular operators ........................... 263
   Exercises .................................................. 265
   Comments ................................................... 266

   References ................................................. 269
   Index ...................................................... 281


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:48 2019. Размер: 12,762 bytes.
Посещение N 1685 c 04.09.2012