Bernatz R. Fourier series and numerical methods for partial differential equations (Hoboken, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBernatz R. Fourier series and numerical methods for partial differential equations. - Hoboken: Wiley, 2010. - xiii, 318 p. - Ref.: p.311-313. - Ind.: p.315-318. - ISBN 978-0-470-61796-0
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ........................................................ xi
Acknowledgments .............................................. xiii
1  Introduction ................................................. 1
   1.1  Terminology and Notation ................................ 1
   1.2  Classification .......................................... 2
   1.3  Canonical Forms ......................................... 3
   1.4  Common PDEs ............................................. 4
   1.5  Cauchy-Kowalevski Theorem ............................... 5
   1.6  Initial Boundary Value Problems ......................... 7
   1.7  Solution Techniques ..................................... 8
   1.8  Separation of Variables ................................. 9
   Exercises ................................................... 15
2  Fourier Series .............................................. 19
   2.1  Vector Spaces .......................................... 19
        2.1.1  Subspaces ....................................... 21
        2.1.2  Basis and Dimension ............................. 21
        2.1.3  Inner Products .................................. 22
   2.2  The Integral as an Inner Product ....................... 23
        2.2.1  Piecewise Continuous Functions .................. 24
        2.2.2  Inner Product on fig.7p(α, b) ....................... 25
   2.3  Principle of Superposition ............................. 26
        2.3.1  Finite Case ..................................... 26
        2.3.2  Infinite Case ................................... 28
        2.3.3  Hilbert Spaces .................................. 30
   2.4  General Fourier Series ................................. 30
   2.5  Fourier Sine Series on (0, c) .......................... 31
        2.5.1  Odd, Periodic Extensions ........................ 33
   2.6  Fourier Cosine Series on (0, c) ........................ 35
        2.6.1  Even, Periodic Extensions ....................... 36
   2.7  Fourier Series on (—с, c) .............................. 37
        2.7.1  2c-Periodic Extensions .......................... 40
   2.8  Best Approximation ..................................... 40
   2.9  Bessel's Inequality .................................... 45
   2.10 Piecewise Smooth Functions ............................. 46
   2.11 Fourier Series Convergence ............................. 50
        2.11.1 Alternate Form .................................. 50
        2.11.2 Riemann-Lebesgue Lemma .......................... 51
        2.11.3 A Dirichlet Kernel Lemma ........................ 52
        2.11.4 A Fourier Theorem ............................... 54
   2.12 2c-Periodic Functions .................................. 58
   2.13 Concluding Remarks ..................................... 61
   Exercises ................................................... 62
3  Sturm-Liouville Problems .................................... 69
   3.1  Basic Examples ......................................... 69
   3.2  Regular Sturm-Liouville Problems ....................... 70
   3.3  Properties ............................................. 71
        3.3.1  Eigenfunction Orthogonality ..................... 72
        3.3.2  Real Eigenvalues ................................ 74
        3.3.3  Eigenfunction Uniqueness ........................ 75
        3.3.4  Non-negative Eigenvalues ........................ 77
   3.4  Examples ............................................... 79
        3.4.1  Neumann Boundary Conditions on [0, c] ........... 79
        3.4.2  Robin and Neumann BCs ........................... 80
        3.4.3  Periodic Boundary Conditions .................... 83
   3.5  Bessel's Equation ...................................... 85
   3.6  Legendre's Equation .................................... 90
   Exercises ................................................... 93
4  Heat Equation ............................................... 97
   4.1  Heat Equation in 1D .................................... 97
   4.2  Boundary Conditions ................................... 100
   4.3  Heat Equation in 2D ................................... 101
   4.4  Heat Equation in 3D ................................... 103
   4.5  Polar-Cylindrical Coordinates ......................... 105
   4.6  Spherical Coordinates ................................. 108
   Exercises .................................................. 108
5  Heat Transfer in ID ........................................ 113
   5.1  Homogeneous IBVP ...................................... 113
        5.1.1  Exanfple: Insulated Ends ....................... 114
   5.2  Semihomogeneous PDE ................................... 116
        5.2.1  Variation of Parameters ........................ 117
        5.2.2  Example: Semihomogeneous IBVP .................. 119
   5.3  Nonhomogeneous Boundary Conditions .................... 120
        5.3.1  Example: Nonhomogeneous Boundary Condition ..... 122
        5.3.2  Example: Time-Dependent Boundary Condition ..... 125
        5.3.3  Laplace Transforms ............................. 127
        5.3.4  Duhamel's Theorem .............................. 128
   5.4  Spherical Coordinate Example .......................... 131
   Exercises .................................................. 133
6  Heat Transfer in 2D and 3D ................................. 139
   6.1  Homogeneous 2D IBVP ................................... 139
        6.1.1  Example: Homogeneous IBVP ...................... 142
   6.2  Semihomogeneous 2D IBVP ............................... 143
        6.2.1  Example: Internal Source or Sink ............... 146
   6.3  Nonhomogeneous 2D IBVP ................................ 147
   6.4  2D BVP: Laplace and Poisson Equations ................. 150
        6.4.1  Dirichlet Problems ............................. 150
        6.4.2  Dirichlet Example .............................. 154
        6.4.3  Neumann Problems ............................... 156
        6.4.4  Neumann Example ................................ 159
        6.4.5  Dirichlet, Neumann ВС Example .................. 163
        6.4.6  Poisson Problems ............................... 166
   6.5  Nonhomogeneous 2D Example ............................. 169
   6.6  Time-Dependent BCs .................................... 170
   6.7  Homogeneous 3D IBVP ................................... 173
   Exercises .................................................. 176
7  Wave Equation .............................................. 181
   7.1  Wave Equation in ID ................................... 181
        7.1.1  d'Alembert's Solution .......................... 184
        7.1.2  Homogeneous IBVP: Series Solution .............. 187
        7.1.3  Semihomogeneous IBVP ........................... 190
        7.1.4  Nonhomogeneous IBVP ............................ 193
        7.1.5  Homogeneous IBVP in Polar Coordinates .......... 195
   7.2  Wave Equation in 2D ................................... 199
        7.2.1 2D Homogeneous Solution ......................... 199
   Exercises .................................................. 202
8  Numerical Methods: an Overview ............................. 207
   8.1  Grid Generation ....................................... 208
        8.1.1  Adaptive Grids ................................. 210
        8.1.2  Multilevel Methods ............................. 212
   8.2  Numerical Methods ..................................... 214
        8.2.1  Finite Difference Method ....................... 214
        8.2.2  Finite Element Method .......................... 216
        8.2.3  Finite Analytic Method ......................... 217
   8.3  Consistency and Convergence ........................... 218
9  The Finite Difference Method ............................... 219
   9.1  Discretization ........................................ 219
   9.2  Finite Difference Formulas ............................ 222
        9.2.1  First Partials ................................. 222
        9.2.2  Second Partials ................................ 222
   9.3  ID Heat Equation ...................................... 223
        9.3.1  Explicit Formulation ........................... 223
        9.3.2  Implicit Formulation ........................... 224
   9.4  Crank-Nicolson Method ................................. 226
   9.5  Error and Stability ................................... 226
        9.5.1  Error Types .................................... 226
        9.5.2  Stability ...................................... 227
   9.6  Convergence in Practice ............................... 231
   9.7  ID Wave Equation ...................................... 231
        9.7.1  Implicit Formulation ........................... 231
        9.7.2  Initial Conditions ............................. 233
   9.8  2D Heat Equation in Cartesian Coordinates ............. 234
   9.9  Two-Dimensional Wave Equation ......................... 239
   9.10 2D Heat Equation in Polar Coordinates ................. 239
   Exercises .................................................. 244
10 Finite Element Method ...................................... 249
   10.1 General Framework ..................................... 250
   10.2 ID Elliptical Example ................................. 252
        10.2.1 Reformulations ................................. 252
        10.2.2 Equivalence in Forms ........................... 253
        10.2.3 Finite Element Solution ........................ 255
   10.3 2D Elliptical Example ................................. 257
        10.3.1 Weak Formulation ............................... 257
        10.3.2 Finite Element Approximation ................... 258
   10.4 Error Analysis ........................................ 261
   10.5 ID Parabolic Example .................................. 264
        10.5.1 Weak Formulation ............................... 264
        10.5.2 Method of Lines ................................ 265
        10.5.3 Backward Euler's Method ........................ 266
   Exercises .................................................. 268
11 Finite Analytic Method ..................................... 271
   11.1 ID Transport Equation ................................. 272
        11.1.1 Finite Analytic Solution ....................... 273
        11.1.2 FA and FD Coefficient Comparison ............... 275
        11.1.3 Hybrid Finite Analytic Solution ................ 279
   11.2 2D Transport Equation ................................. 280
        11.2.1 FA Solution on Uniform Grids ................... 282
        11.2.2 The Poisson Equation ........................... 287
   11.3 Convergence and Accuracy .............................. 290
   Exercises .................................................. 291

Appendix A:  ID Case .......................................... 295
Appendix B:  FA 2D Case ....................................... 303
         B.l The Case fig.8 = 1 ................................... 308
         B.2 The Case fig.8 = -Bx + Ay ............................ 309
References .................................................... 311
Index ......................................................... 315


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:48 2019. Размер: 15,152 bytes.
Посещение N 1390 c 04.09.2012