Dissertationes mathematicae; 477 (Warszawa, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMultidegrees of tame automorphisms of Cn / M.Karaś; Institute of Mathematics, Polish Academy of Sciences. - Warszawa: Instytut matematyczny PAN, 2011. - 55 p. - Ref.: p.53-55. - (Dissertationes mathematicae; 477) - ISSN 0012-3862
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
0. Introduction
1  Notation, basic definitions and two-dimensional case ......... 6
   1.1  Notation ................................................ 7
   1.2  Examples of polynomial automorphisms .................... 7
   1.3  Degree, bidegree and multidegree ........................ 8
   1.4  Jung and van der Kulk result ............................ 9
2  Main tools .................................................. 11
   2.1  Poisson bracket and degree of polynomials .............. 11
   2.2  Degree of a Poisson bracket and a linear change of
        coordinates ............................................ 13
   2.3  Shestakov-Umirbaev reductions .......................... 15
   2.4  Some number theory ..................................... 18
3  Some useful results ......................................... 19
   3.1  Some simple remarks .................................... 19
   3.2  Reducibility of type I and II .......................... 21
   3.3  Reducibility of type HI ................................ 22
   3.4  Reducibility of type IV and Kuroda's result ............ 25
   3.5  Reducibility and linear change of coordinates .......... 25
   3.6  Relationship between the degree of the Poisson
        bracket and the number of variables .................... 26
4  The case (p1, p2, p3) and its generalization ................ 28
   4.1  The case (p1, p2, p3) .................................. 28
   4.2  Some consequences ...................................... 29
   4.3  Generalization ......................................... 30
   4.4  The set mdeg(Aut(fig.123)) \ mdeg(Tame(C3)) ................. 30
5  The case (3, p2, p3) ........................................ 32
6  The case (4, p2, p3) ........................................ 33
   6.1  The case (4, even, even) ............................... 33
   6.2  The case (4, odd, odd) ................................. 33
   6.3  The case (4, even, odd) ................................ 35
   6.4  The case (4, odd, even) ................................ 37
7  The cases (p, p2, p3)) and (5, p2, p3) ...................... 39
   7.1  The general case ....................................... 39
   7.2  Tame automorphism of fig.123 with multidegree equal
        (5, 6, 9) and the Jacobian Conjecture .................. 41
   7.3  The case (p, 2(p - 2), 3(p - 2)) ....................... 43
8  Finiteness results .......................................... 44
9  Multidegree of the inverse of a polynomial automorphism of
   fig.122 .......................................................... 46
   9.1  Multidegree and length of automorphisms of fig.122 .......... 46
   9.2  The case of length 1 ................................... 49
   9.3  The case (p2, p3)) ..................................... 50
   9.4  The case (d,d) ......................................... 52

References ..................................................... 53


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:02 2019. Размер: 6,878 bytes.
Посещение N 1715 c 24.01.2012