Memoirs of the American Mathematical Society; vol.213, N 1001 (Providence, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаStrickland N.P. Multicurves and equivariant cohomology. - Providence: American Mathematical Society, 2011. - iii, 116 p. - (Memoirs of the American Mathematical Society; vol.213, N 1001). - Bibliogr.: p.115-116. - Ind.: p.117. - ISBN 978-0-8218-4901-9; ISSN 0065-9266
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Chapter 1  Introduction ......................................... 1
Chapter 2  Multicurves .......................................... 5
Chapter 3  Differential forms .................................. 11
Chapter 4  Equivariant projective spaces ....................... 13
Chapter 5  Equivariant orientability ........................... 19
Chapter 6  Simple examples ..................................... 23
Chapter 7  Formal groups from algebraic groups ................. 25
Chapter 8  Equivariant formal groups of product type ........... 27
Chapter 9  Equivariant formal groups over rational rings ....... 31
Chapter 10 Equivariant formal groups of pushout type ........... 37
Chapter 11 Equivariant Morava E-theory ......................... 41
Chapter 12 A completion theorem ................................ 45
Chapter 13 Equivariant formal group laws and complex
           cobordism ........................................... 47
Chapter 14 A counterexample .................................... 49
Chapter 15 Divisors ............................................ 51
Chapter 16 Embeddings .......................................... 55
Chapter 17 Symmetric powers of multicurves ..................... 57
Chapter 18 Classification of divisors .......................... 63
Chapter 19 Local structure of the scheme of divisors ........... 67
Chapter 20 Generalised homology of Grassmannians ............... 71
Chapter 21 Thom isomorphisms and the projective bundle
           theorem ............................................. 77
Chapter 22 Duality ............................................. 83
Chapter 23 Further theory of infinite Grassmannians ............ 97
Chapter 24 Transfers and the Burnside ring .................... 103
Chapter 25 Generalisations .................................... 113
Bibliography .................................................. 115
Index ......................................................... 117


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:02 2019. Размер: 5,608 bytes.
Посещение N 1657 c 24.01.2012