Chapter 1 Introduction ......................................... 1
Chapter 2 Multicurves .......................................... 5
Chapter 3 Differential forms .................................. 11
Chapter 4 Equivariant projective spaces ....................... 13
Chapter 5 Equivariant orientability ........................... 19
Chapter 6 Simple examples ..................................... 23
Chapter 7 Formal groups from algebraic groups ................. 25
Chapter 8 Equivariant formal groups of product type ........... 27
Chapter 9 Equivariant formal groups over rational rings ....... 31
Chapter 10 Equivariant formal groups of pushout type ........... 37
Chapter 11 Equivariant Morava E-theory ......................... 41
Chapter 12 A completion theorem ................................ 45
Chapter 13 Equivariant formal group laws and complex
cobordism ........................................... 47
Chapter 14 A counterexample .................................... 49
Chapter 15 Divisors ............................................ 51
Chapter 16 Embeddings .......................................... 55
Chapter 17 Symmetric powers of multicurves ..................... 57
Chapter 18 Classification of divisors .......................... 63
Chapter 19 Local structure of the scheme of divisors ........... 67
Chapter 20 Generalised homology of Grassmannians ............... 71
Chapter 21 Thom isomorphisms and the projective bundle
theorem ............................................. 77
Chapter 22 Duality ............................................. 83
Chapter 23 Further theory of infinite Grassmannians ............ 97
Chapter 24 Transfers and the Burnside ring .................... 103
Chapter 25 Generalisations .................................... 113
Bibliography .................................................. 115
Index ......................................................... 117
|