1 Diffusion in Minerals and Melts: Introduction
К. Zhang, D.J. Cherniak
INTRODUCTION: RATIONALE FOR THIS VOLUME ...................... 1
SCOPE AND CONTENT OF THIS VOLUME ............................. 2
REFERENCES ................................................... 3
2 Diffusion in Minerals and Melts: Theoretical Background
Y. Zhang
INTRODUCTION ................................................. 5
FUNDAMENTALS OF DIFFUSION .................................... 6
Basic concepts ............................................ 6
Microscopic view of diffusion ............................. 9
Various kinds of diffusion ............................... 10
General mass conservation and various forms of the
diffusion equation ....................................... 14
Diffusion in three dimensions (isotropic media) .......... 17
SOLUTIONS TO BINARY AND ISOTROPIC DIFFUSION PROBLEMS ........ 18
Thin-source diffusion .................................... 18
Comments about fitting data .............................. 19
Sorption or desorption ................................... 20
Diffusion couple or triple ............................... 22
Diffusive crystal dissolution ............................ 23
Variable diffusivity along a profile ..................... 25
Homogenization of a crystal with oscillatory zoning ...... 26
One dimensional diffusional exchange between two phases
at constant temperature .................................. 27
Spinodal decomposition ................................... 28
Diffusive loss of radiogenic nuclides and closure
temperature .............................................. 29
DIFFUSION IN ANISOTROPIC MEDIA .............................. 32
MULTICOMPONENT DIFFUSION .................................... 35
Effective binary approach, FEBD and SEBD ................. 36
Modified effective binary approach (activity-based
effective binary approach) ............................... 39
Diffusivity matrix approach .............................. 40
Activity-based diffusivity matrix approach ............... 42
Origin of the cross-diffusivity terms .................... 42
DIFFUSION COEFFICIENTS ...................................... 43
Temperature dependence of diffusivities; Arrhenius
relation ................................................. 43
Pressure dependence of diffusivities ..................... 43
Diffusion in crystalline phases and defects .............. 45
Diffusivities and oxygen fugacity ........................ 47
Compositional dependence of diffusivities ................ 47
Relation between diffusivity, particle size, particle
charge, and viscosity .................................... 48
Diffusivity and ionic porosity ........................... 50
Compensation "law" ....................................... 50
Interdiffusivity and self diffusivity .................... 50
CONCLUSIONS ................................................. 53
ACKNOWLEDGMENTS ............................................. 53
REFERENCES .................................................. 53
APPENDIX 1. EXPRESSION OF DIFFUSION TENSOR IN CRYSTALS
WITH DIFFERENT SYMMETRY ..................................... 58
3 Non-traditional and Emerging Methods for Characterizing
Diffusion in Minerals and Mineral Aggregates
E.B. Watson, R. Dohmen
INTRODUCTION ................................................ 61
THE THIN-FILM METHOD AND PULSED LASER DEPOSITION (PLD):
PRINCIPLES AND RECENT DEVELOPMENTS ....................... 63
Definition of a thin film ................................ 63
Why use thin films? ...................................... 64
Fitting of diffusion profiles from thin-film diffusion
couples .................................................. 65
Analytical solutions - examples .......................... 65
Fitting uncertainties .................................... 67
Pulsed laser ablation: a versatile method for thin film
deposition ............................................... 68
Application of PLD to diffusion studies-examples ......... 70
Single layer configurations .............................. 71
Double layer configurations .............................. 74
THE POWDER-SOURCE TECHNIQUE ................................. 78
Overview and history ..................................... 78
Rationale and details .................................... 79
Analytical considerations, advantages and drawbacks ...... 80
ION IMPLANTATION AND DIFFUSION EXPERIMENTS .................. 82
Introduction ............................................. 82
Interactions between energetic ions and solids ........... 83
Ion implantation ......................................... 84
Mathematical aspects of implantation and diffusion ....... 85
Complications and examples ............................... 87
THE DETECTOR-PARTICLE METHOD FOR STUDIES OF GRAIN-BOUNDARY
DIFFUSION ................................................... 90
Context and history ...................................... 90
The detector-particle approach: general considerations
and examples ............................................. 91
Numerical simulation: constant-surface model ............. 94
A simple analysis of the detector-particle method ........ 99
Concluding remarks on detector particles ................ 100
ACKNOWLEDGMENTS ............................................ 101
REFERENCES ................................................. 101
4 Analytical Methods in Diffusion Studies
D.J. Cherniak, R. Hervig, J. Koepke, Y. Zhang, D. Zhao
INTRODUCTION ............................................... 107
"CLASSICAL" METHODS FOR MEASURING DIFFUSION PROFILES
USING RADIOACTIVE TRACERS .................................. 109
Serial sectioning ....................................... 109
Autoradiography ......................................... 110
ELECTRON MICROPROBE ANALYSIS ............................... 111
Principles of EMPA ...................................... 111
Instrumentation for EMPA ................................ 113
Applications and limitations of EMPA .................... 120
Summary ................................................. 123
SECONDARY ION MASS SPECTROMETRY (SIMS) ..................... 123
Basic principles of SIMS ................................ 123
Using SIMS to measure diffusion profiles ................ 125
Depth profile analyses .................................. 129
Ion implantation and SIMS ............................... 134
Summary comments ........................................ 134
LASER ABLATION ICP-MS (LA ICP-MS) .......................... 134
RUTHERFORD BACKSCATTERING SPECTROMETRY (RBS) ............... 137
Basic principles of RBS ................................. 137
Depth and mass resolution ............................... 140
Example applications of RBS in diffusion studies ........ 141
NUCLEAR REACTION ANALYSIS (NRA) ............................ 143
ELASTIC RECOIL DETECTION (ERD) ............................. 147
FOURIER TRANSFORM INFRARED SPECTROSCOPY ................. 148
Vibrational modes and infrared absorption ............... 148
Instrumentation for Infrared Spectroscopy ............... 152
Different types of IR spectra ........................... 152
Calibration ............................................. 153
Applications to geology ................................. 155
SYNCHROTRON X-RAY FLUORESCENCE MICROANALYSIS (μ-SRXRF) ..... 156
Instrumental setup, spectra acquisition and data
processing .............................................. 156
Sample preparation ...................................... 158
Applications of μ-SRXRF for measuring trace element
diffusivities in silicate melts ......................... 158
ACKNOWLEDGMENTS ............................................ 160
REFERENCES ................................................. 160
5 Diffusion of H, C, and О Components in Silicate Melts
Y. Zhang, H. Ni
INTRODUCTION ............................................... 171
DIFFUSION OF THE H2O COMPONENT ............................. 172
H2O speciation: equilibrium and kinetics ................ 172
H2O diffusion literature ................................ 178
H2O diffusion, theory and data summary .................. 180
MOLECULAR H2 DIFFUSION ..................................... 191
DIFFUSION OF THE CO2 COMPONENT ............................. 197
OXYGEN DIFFUSION ........................................... 199
Self-diffusion of oxygen in silicate melts under dry
conditions .............................................. 200
Chemical diffusion of oxygen under dry conditions ....... 207
"Self diffusion of oxygen in the presence of H20 ........ 209
"Self diffusion of oxygen in natural silicate melts in
natural environments .................................... 211
Contribution of CO2 diffusion to 18O transport in
CO2-bearing melts ....................................... 213
Oxygen diffusion and viscosity: applicability of the
Eyring equation ......................................... 216
02 DIFFUSION IN PURE SILICA MELT ........................... 217
SUMMARY AND CONCLUSIONS .................................... 219
ACKNOWLEDGMENTS ............................................ 219
REFERENCES ................................................. 219
6 Noble Gas Diffusion in Silicate Glasses and Melts
H. Behrens
INTRODUCTION ............................................... 227
EXPERIMENTAL AND ANALYTICAL METHODS ........................ 228
Studies at atmospheric and sub-atmospheric pressure ..... 228
Studies at high-pressure ................................ 230
DIFFUSION SYSTEMATICS ...................................... 232
Temperature dependence of diffusivity ................... 232
Pressure dependence of diffusivity ...................... 233
Comparison of different noble gases in the same matrix
glass ................................................... 236
COMPOSITIONAL EFFECTS ON NOBLE GAS DIFFUSION ............... 238
He diffusion ............................................ 238
Ne diffusion ............................................ 240
Ar diffusion ............................................ 241
Kr, Xe and Rn diffusion ................................. 248
COMPARISON OF NOBLE GASES AND MOLECULAR SPECIES ............ 249
H2 diffusion ............................................ 249
H2O diffusion ........................................... 250
O2 diffusion ............................................ 250
N2 diffusion ............................................ 251
CO2 diffusion ........................................... 252
ACKNOWLEDGMENTS ............................................ 252
RERERENCES ................................................. 253
APPENDIX ................................................... 257
7 Self-diffusion in Silicate Melts: Theory, Observations
and Applications to Magmatic Systems
C.E. Lesher
INTRODUCTION ............................................... 269
ADDITIONAL TERMINOLOGY ..................................... 270
THEORETICAL CONSIDERATIONS ................................. 271
Self and tracer diffusion ............................... 271
Intradiffusion .......................................... 276
Polyanionic diffusion ................................... 280
EXPERIMENTAL METHODS AND DATA .............................. 283
Thin source method ...................................... 283
Diffusion couple method ................................. 284
Capillary-reservoir method .............................. 284
Gas exchange method ..................................... 285
DISCUSSION ................................................. 285
Background .............................................. 285
Ionic charge and size ................................... 286
Temperature ............................................. 288
Viscosity and the Eyring diffusivity .................... 291
Pressure ................................................ 296
CONCLUDING REMARKS ......................................... 303
ACKNOWLEDGMENTS ............................................ 305
REFERENCES ................................................. 305
8 Diffusion Data in Silicate Melts
К. Zhang, H. Ni, Y. Chen
INTRODUCTION ............................................... 311
Terminology ............................................. 312
General comments about experimental methods to extract
diffusivities ........................................... 313
Grouping of the elements ................................ 315
Data compilation ........................................ 315
Quantification of D as a function of T, H20, ƒо2- and
melt composition ........................................ 317
DIFFUSION OF INDIVIDUAL ELEMENTS ........................... 317
Diffusion of major elements versus minor and trace
elements ................................................ 317
H diffusion ............................................. 320
The alkalis (Li, Na, K, Rb, Cs, Fr) ..................... 320
The alkali earths (Be, Mg, Ca, Sr, Ba, Ra) .............. 330
B, Al, Ga, In, and Tl ................................... 340
C, Si, Ge, Sn and Pb .................................... 345
N, P, As, Sb, Bi ........................................ 352
O, S, Se, Те, Ро ........................................ 354
F, Cl, Br, I, At ........................................ 356
He, Ne, Ar, Kr, Xe, Rn .................................. 360
Sc,Y,REE ................................................ 360
Ti, Zr, Hf .............................................. 375
V, Nb, Ta ............................................... 380
Cr, Mo, W ............................................... 383
Mn, Fe, Co, Ni, Cu, Zn .................................. 383
Tc, Ru, Rh, Pd, Ag, Cd .................................. 389
Re, Os, Ir, Pt, Au, Hg .................................. 389
Ac, Th, Pa, U ........................................... 391
DISCUSSION ................................................. 393
The empirical model by Mungall (2002) ................... 393
Effect of ionic size on diffusivities of isovalent
ions .................................................... 395
Dependence of diffusivities on melt composition ......... 397
Diffusivity sequence in various melts ................... 398
CONCLUDING REMARKS ......................................... 402
ACKNOWLEDGMENTS ............................................ 404
REFERENCES ................................................. 404
9 Multicomponent Diffusion in Molten Silicates: Theory,
Experiments, and Geological Applications
К. Liang
INTRODUCTION ............................................... 409
IRREVERSIBLE THERMODYNAMICS AND MULTICOMPONENT DIFFUSION ... 411
The rate of entropy production .......................... 411
Diffusing species and choice of endmember component ..... 412
GENERAL FEATURES OF MULTICOMPONENT DIFFUSION ............... 414
Solutions to multicomponent diffusion equations ......... 414
Essential features of multicomponent diffusion .......... 415
EXPERIMENTAL STUDIES OF MULTICOMPONENT DIFFUSION ........... 423
Experimental design and strategy ........................ 423
Inversion methods ....................................... 425
Experimental results .................................... 428
EMPIRICAL MODELS FOR MULTICOMPONENT DIFFUSION .............. 434
Empirical models ........................................ 434
Experimental tests of the empirical models .............. 436
GEOLOGICAL APPLICATIONS .................................... 437
Modeling isotopic ratios during chemical diffusion in
multicomponent melts .................................... 437
Convective crystal dissolution in a multicomponent
melt .................................................... 438
Crystal growth and dissolution in a multicomponent
melt .................................................... 441
FUTURE DIRECTIONS .......................................... 442
ACKNOWLEDGMENTS ............................................ 443
REFERENCES ................................................. 443
10 Oxygen and Hydrogen Diffusion in Minerals
J.R. Farver
INTRODUCTION ............................................... 447
EXPERIMENTAL METHODS ....................................... 447
Bulk exchange experiments ............................... 447
Single crystal experiments .............................. 448
ANALYTICAL METHODS ......................................... 449
Mass Spectrometry ....................................... 449
Nuclear Reaction Analysis ............................... 450
Fourier Transform Infrared Spectroscopy ................. 450
Other methods ........................................... 450
RESULTS .................................................... 451
Quartz .................................................. 451
Feldspars ............................................... 455
Olivine ................................................. 461
Pyroxene ................................................ 465
Amphiboles .............................................. 470
Sheet silicates ......................................... 471
Garnet .................................................. 472
Zircons ................................................. 474
Titanite ................................................ 474
Melilite ................................................ 475
Tourmaline and beryl .................................... 476
Oxides .................................................. 477
Carbonates .............................................. 480
Phosphates .............................................. 482
DISCUSSION ................................................. 483
Effect of temperature ................................... 483
Effect of mineral structure ............................. 485
Empirical methods ....................................... 486
Anisotropy .............................................. 486
Pressure dependence ..................................... 488
Effect of water ......................................... 488
Hydrogen chemical diffusion and the role of defects ..... 489
ACKNOWLEDGMENTS ............................................ 490
REFERENCES ................................................. 490
11 Diffusion of Noble Gases in Minerals
E.F. Baxter
INTRODUCTION ............................................... 509
The interpretive challenge of bulk-degassing
experiments ............................................. 510
HELIUM ..................................................... 513
He in apatite ........................................... 514
He in titanite .......................................... 520
He in zircon and zircon-structure rare earth element
orthophosphates ......................................... 520
He in monazite and monazite-structure rare earth
element orthophosphates ................................. 523
He diffusion in other minerals .......................... 523
ARGON ...................................................... 527
Ar in micas ............................................. 528
Ar in amphibole ......................................... 529
Ar in feldspar .......................................... 529
Ar diffusion in other minerals .......................... 530
THE OTHER NOBLE GASES: NEON, KRYPTON, XENON, RADON ......... 532
THEMES IN NOBLE GAS DIFFUSION IN MINERALS .................. 534
Effect of radiation damage .............................. 534
Effect of deformation ................................... 535
Multi-domain diffusion .................................. 536
Multi-path diffusion .................................... 537
Synthesis: relative diffusivities of the noble gases
in minerals ............................................. 539
CHOOSING THE "RIGHT" DIFFUSION DATA ........................ 542
Role of noble gas diffusion data in Ar/Ar and
(U-Th)/He thermochronology .............................. 545
SUGGESTIONS FOR FUTURE STUDY ............................... 548
Diffusion at high pressures and temperatures ............ 548
Diffusion of Ar and He in common mantle minerals ........ 548
In situ depth profile analysis .......................... 551
Quantification of noble gas diffusion within "fast
paths" .................................................. 551
Integrated studies with multiple noble gases ............ 551
Quantification of effects of radiation damage,
defects, and deformation ................................ 551
ACKNOWLEDGMENTS ............................................ 552
REFERENCES ................................................. 552
12 Cation Diffusion Kinetics in Aluminosilicate Garnets
and Geological Applications
J. Ganguly
INTRODUCTION ............................................... 559
NOMENCLATURE OF DIFFUSION COEFFICIENTS ..................... 560
EXPERIMENTAL DETERMINATION OF DIFFUSION COEFFICIENTS ....... 561
Experimental methods .................................... 561
Modeling of experimental data ........................... 564
EXPERIMENTAL DATA AND DISCUSSION ........................... 566
Self/tracer diffusion coefficients of Mn, Fe2+ and
Mg ...................................................... 566
Diffusion properties of Ca .............................. 573
Tracer diffusion coefficients of trivalent rare earth
ions .................................................... 575
D-MATRIX, UPHILL DIFFUSION AND CHEMICAL WAVES .............. 578
COMMENTS ON EXTRAPOLATION AND GEOLOGICAL APPLICATION OF
EXPERIMENTAL DIFFUSION DATA ................................ 580
Change of diffusion mechanism and extrapolation of
diffusion data .......................................... 580
Modeling prograde vs. retrograde profiles ............... 580
Treatment of diffusion data ............................. 580
A SEMI-EMPIRICAL MODEL OF DIVALENT CATION DIFFUSION ........ 581
Carlson model ........................................... 581
Discussion .............................................. 582
GEOLOGICAL APPLICATIONS .................................... 585
Modeling multicomponent diffusion profiles using
effective binary diffusion formulation .................. 586
Cooling rates of metamorphic rocks: diffusion
modeling of garnet vs. geochronological constraints ..... 587
Subduction and exhumation rates ......................... 587
Modeling partially modified growth zoning of garnets
in metamorphic rocks .................................... 589
Interpretation of REE patterns of basaltic magma ........ 592
Sm-Nd and Lu-Hf geochronology of garnets in
metamorphic rocks ....................................... 594
CONCLUDING REMARKS ......................................... 596
ACKNOWLEDGMENTS ............................................ 598
REFERENCES ................................................. 598
APPENDIX: COMBINED ANALYTICAL AND NUMERICAL METHOD FOR
MODELING MULTICOMPONENT DIFFUSION PROFILES ................. 600
13 Diffusion Coefficients in Olivine, Wadsleyite and
Ringwoodite
S. Chakraborty
INTRODUCTION ............................................... 603
OLIVINE .................................................... 603
Structure of olivine and types of diffusion
coefficients ............................................ 603
Diffusion mechanisms in olivine ......................... 605
Diffusion of divalent cations ........................... 608
Diffusion of Si and oxygen .............................. 620
Diffusion of ions that enter olivine via heterovalent
substitutions ........................................... 623
INFORMATION FROM OLIVINES OTHER THAN Fe-Mg BINARY SOLID
SOLUTIONS .................................................. 627
SPECTROSCOPIC MEASUREMENTS ................................. 628
COMPUTER CALCULATIONS ...................................... 628
WADSLEYITE AND RINGWOODITE ................................. 629
Diffusion of divalent cations ........................... 630
Diffusion of silicon and oxygen ......................... 631
Diffusion of ions that are incorporated by
heterovalent substitutions .............................. 633
A SUMMARY, AND APPLICATIONS OF DIFFUSION DATA IN
OLIVINE, WADSLEYITE AND RINGWOODITE ........................ 633
ACKNOWLEDGMENTS ............................................ 635
REFERENCES ................................................. 635
14 Diffusion in Pyroxene, Mica and Amphibole
D.J. Cherniak, A. Dimanov
INTRODUCTION ............................................... 641
CATION DIFFUSION IN PYROXENES .............................. 641
Pioneering approaches ................................... 643
More recent investigations of major element
diffusion ............................................... 644
Diffusion of major element cations in clinopyroxenes .... 645
Diffusion in synthetic versus natural crystals .......... 656
Major element cation diffusion in orthopyroxenes ........ 656
Pyroxene point defect chemistry ......................... 658
Diffusion of minor and trace elements in pyroxene ....... 661
Comparison of diffusion of cations in pyroxene .......... 672
DIFFUSION IN AMPHIBOLES AND MICAS .......................... 676
F-OH interdiffusion in tremolite ........................ 677
Sr diffusion in tremolite and hornblende ................ 678
Sr diffusion in fluorphlogopite ......................... 679
К and Rb diffusion in biotite ........................... 679
ACKNOWLEDGMENTS ............................................ 680
REFERENCES ................................................. 680
APPENDIX ................................................... 685
15 Cation Diffusion in Feldspars
D.J. Cherniak
INTRODUCTION ............................................... 691
DIFFUSION OF MAJOR CONSTITUENTS ............................ 692
Sodium .................................................. 692
Potassium ............................................... 695
K-Na interdiffusion ..................................... 696
Calcium ................................................. 698
Barium .................................................. 699
CaAl-NaSi interdiffusion ................................ 700
Silicon ................................................. 703
DIFFUSION OF MINOR AND TRACE ELEMENTS ...................... 705
Lithium ................................................. 705
Rubidium ................................................ 705
Magnesium ............................................... 707
Iron .................................................... 708
Strontium ............................................... 708
Lead .................................................... 717
Radium .................................................. 721
Rare Earth Elements ..................................... 721
COMPARISON OF RELATIVE DIFFUSIVITIES OF CATIONS IN
VARIOUS FELDSPAR COMPOSITIONS .............................. 723
Albite .................................................. 723
K-feldspar .............................................. 723
Intermediate alkali feldspars ........................... 725
Anorthite ............................................... 725
Labradorite ............................................. 726
Oligoclase .............................................. 728
ACKNOWLEDGMENTS ............................................ 728
REFERENCES ................................................. 728
16 Diffusion in Quartz, Melilite, Silicate Perovskite, and
MuUite
D.J. Cherniak
INTRODUCTION ............................................... 735
DIFFUSION IN QUARTZ ........................................ 735
Silicon ................................................. 736
Aluminum and gallium .................................... 738
Alkali elements - Li, Na, К ............................. 739
Calcium ................................................. 741
Titanium ................................................ 741
Diffusion in quartz - a summary ......................... 742
DIFFUSION IN MELILITE ...................................... 743
Al + Al ↔ Mg + Si interdiffusion ........................ 743
Mg ...................................................... 743
Mn, Fe, Co, and Ni ...................................... 746
Ca, Sr, and Ba .......................................... 748
Potassium ............................................... 749
Diffusion in melilite - a summary ....................... 750
DIFFUSION IN SILICATE PEROVSKITE ........................... 751
Silicon ................................................. 751
Fe-Mg interdiffusion .................................... 753
DIFFUSION IN MULLITE ....................................... 753
ACKNOWLEDGMENTS ............................................ 754
REFERENCES ................................................. 754
17 Diffusion in Oxides
J.A. Van Orman, K.L. Crispin
INTRODUCTION ............................................... 757
PERICLASE .................................................. 758
General considerations .................................. 758
Oxygen .................................................. 759
Magnesium ............................................... 763
Other group IIA divalent cations ........................ 766
Group IIIA and IIIB trivalent cations ................... 769
Tetravalent cations ..................................... 771
Transition metals ....................................... 771
Hydrogen ................................................ 783
SPINEL ..................................................... 783
Oxygen .................................................. 784
Magnesium ............................................... 785
Fe-Mg interdiffusion .................................... 786
Mg-Al interdiffusion .................................... 787
Cr-Al interdiffusion .................................... 787
Hydrogen ................................................ 788
MAGNETITE .................................................. 788
Oxygen .................................................. 789
Iron .................................................... 791
Other cations ........................................... 794
RUTILE ..................................................... 796
Oxygen .................................................. 797
Tetravalent and pentavalent cations ..................... 799
Divalent and trivalent cations .......................... 801
Monovalent cations ...................................... 803
ACKNOWLEDGMENTS ............................................ 804
REFERENCES ................................................. 804
APPENDIX ................................................... 810
18 Diffusion in Accessory Minerals: Zircon, Titanite,
Apatite, Monazite and Xenotime
D.J. Cherniak
INTRODUCTION ............................................... 827
DIFFUSION IN ZIRCON ........................................ 827
Lead .................................................... 828
Rare Earth Elements (REE) ............................... 832
Tetravalent cations ..................................... 835
Cation diffusion in zircon - a summary .................. 838
DIFFUSION IN TITANITE ...................................... 841
Strontium and Lead ...................................... 841
Neodynium ............................................... 843
Zirconium ............................................... 843
Summary of diffusion data for titanite .................. 844
DIFFUSION IN MONAZITE ...................................... 844
Calcium and Lead ........................................ 845
Thorium ................................................. 847
DIFFUSION IN XENOTIME ...................................... 848
DIFFUSION IN APATITE ....................................... 850
Lead and Calcium ........................................ 850
Strontium ............................................... 852
Manganese ............................................... 853
Rare Earth Elements (REE) ............................... 854
Phosphorus .............................................. 858
Uranium and Thorium ..................................... 858
F-OH-Cl ................................................. 859
Comparison of diffusivities of cations and anions in
apatite ................................................. 860
COMPARISON OF DIFFUSIVITIES AMONG ACCESSORY MINERALS ....... 861
Lead .................................................... 861
Rare Earth Elements (REE) ............................... 862
Thorium and Uranium ..................................... 863
ACKNOWLEDGMENTS ............................................ 864
REFERENCES ................................................. 864
19 Diffusion in Carbonates, Fluorite, Sulfide Minerals, and
Diamond
D.J. Cherniak
INTRODUCTION ............................................... 871
CARBONATES ................................................. 871
Carbon .................................................. 872
Calcium ................................................. 875
Magnesium ............................................... 876
Strontium and Lead ...................................... 877
Rare Earth Elements ..................................... 878
Diffusion in calcite - an overview ...................... 879
FLUORITE ................................................... 880
Fluorine ................................................ 881
Calcium ................................................. 883
Strontium, Yttrium and Rare Earth Elements .............. 883
DIAMOND .................................................... 885
SULFIDE MINERALS ........................................... 885
Pyrite .................................................. 886
Pyrrhotite .............................................. 888
Sphalerite .............................................. 889
Chalcopyrite ............................................ 891
Galena .................................................. 892
Summary of diffusion findings for the sulfides .......... 892
ACKNOWLEDGMENTS ............................................ 893
REFERENCES ................................................. 894
20 Diffusion in Minerals: An Overview of Published
Experimental Diffusion Data
J.B. Brady, D.J. Cherniak
INTRODUCTION ............................................... 899
ARRHENIUS RELATIONS ........................................ 900
DIFFUSION COMPENSATION DIAGRAMS ............................ 904
IONIC POROSITY ............................................. 911
DIFFUSION ANISOTROPY ....................................... 913
CONCLUDING REMARKS ......................................... 917
ACKNOWLEDGMENTS ............................................ 917
REFERENCES ................................................. 917
21 Diffusion in Poly crystalline Materials: Grain
Boundaries, Mathematical Models, and Experimental Data
R. Dohmen, R. Milke
INTRODUCTION ............................................... 921
Geological relevance of grain boundary diffusion ........ 921
Physical nature of a grain/interphase boundary .......... 922
Thermodynamic model for interfaces ...................... 925
THE ISOLATED GRAIN BOUNDARY ................................ 927
Basic mathematical description .......................... 927
Kinetic regimes and diffusion penetration distances ..... 928
THE MONOPHASE POLYCRYSTALLINE AGGREGATE .................... 932
Models and kinetic regimes .............................. 932
Bulk diffusion coefficients ............................. 934
A geological example .................................... 936
Profile analysis- the Le Claire approach ................ 937
Complexities of real and polyphase systems .............. 940
Asymmetric grain boundaries/interphase boundaries ....... 941
The migrating isolated grain boundary ................... 942
Presence of dislocations/sub-grain boundaries ........... 944
Element/isotope exchange mediated by grain boundary
diffusion ............................................... 946
EXPERIMENTAL METHODS ....................................... 947
Setup with bi-crystals .................................. 948
Setup with a polycrystalline aggregate .................. 949
Source-sink studies ..................................... 950
EXPERIMENTAL DATA .......................................... 950
Parameters affecting grain boundary diffusion
coefficients ............................................ 950
Direct measurement of tracer diffusion in
polycrystals of geological relevance .................... 955
Concluding remarks ...................................... 964
ACKNOWLEDGMENTS ............................................ 966
REFERENCES ................................................. 966
22 Theoretical Computation of Diffusion in Minerals and
Melts
N. de Koker, L. Stixrude
INTRODUCTION ............................................... 971
THEORETICAL FOUNDATIONS .................................... 972
Thermodynamic description ............................... 972
Statistical mechanical description ...................... 974
COMPUTATIONAL APPROACHES ................................... 976
Characterization of bonding ............................. 977
Adding temperature ...................................... 978
Computation of diffusion ................................ 980
SELECTED APPLICATIONS ...................................... 981
Liquids and melts ....................................... 981
Solids .................................................. 988
A VIEW TO THE FUTURE ....................................... 991
ACKNOWLEDGMENTS ............................................ 991
REFERENCES ................................................. 991
23 Applications of Diffusion Data to High-Temperature Earth
Systems
T. Mueller, E.B. Watson, T.M. Harrison
INTRODUCTION ............................................... 997
DECIPHERING KINETICALLY CONTROLLED PROCESSES USING
DIFFUSION .................................................. 999
Mass transport in geological systems .................... 999
Diffusion in minerals .................................. 1002
Control of solid-state reaction rates and
compositions of reaction products by diffusion ......... 1005
Metamorphic example of diffusion-limited uptake: REE
behavior during garnet growth .......................... 1011
Chemical diffusive fractionation ....................... 1014
Diffusive fractionation in a thermal gradient .......... 1017
THERMOCHRONOLOGY .......................................... 1018
Background ............................................. 1018
Bulk closure ........................................... 1019
Continuous histories ................................... 1021
Dating metamorphic events .............................. 1024
GEOSPEEDOMETRY ............................................ 1025
The concept of geospeedometry .......................... 1025
Deciphering timescales from kinetic modeling ........... 1026
Diffusion in two or three dimentions and the effect
of geometry ............................................ 1027
Example: Deciphering short-term metamorphic events
and timescales ......................................... 1029
ACKNOWLEDGMENTS ........................................... 1032
REFERENCES ................................................ 1032
|