Memoirs of the American Mathematical Society; vol.204, N961 (Providence, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаNon-divergence equations structured on Hörmander vector fields: heat kernels and Harnack inequalities / Bramanti M. et al. - Providence: American Mathematical Society, 2010. - v, 123 p.: ill. - (Memoirs of the American Mathematical Society; Vol.204, N 961). - Bibliogr.: p.121-123. - ISBN 978-0-8218-4903-3; ISSN 0065-9266
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Introduction .................................................... 1

Part   I: Operators with constant coefficients .................. 7

1  Overview of Part I ........................................... 7
2  Global extension of Hörmander's vector fields and geometric
   properties of the CC-distance ................................ 9
   2.1  Some global geometric properties of CC-distances ....... 10
   2.2  Global extension of Hörmander's vector fields .......... 13
3  Global extension of the operator HA and existence of 
   a fundamental solution ...................................... 15
4  Uniform Gevray estimates and upper bounds of fundamental
   solutions for large d(x,y) .................................. 18
5  Fractional integrals and uniform L2 bounds of fundamental
   solutions for large d(x,y) .................................. 25
6  Uniform global upper bounds for fundamental solutions ....... 30
   6.1  Homogeneous groups ..................................... 31
   6.2. Upper bounds on fundamental solutions .................. 37
7  Uniform lower bounds for fundamental solutions .............. 54
8  Uniform upper bounds for the derivatives of the
   fundamental solutions ....................................... 57
9  Uniform upper bounds on the difference of the fundamental
   solutions of two operators .................................. 60

Part  II: Fundamental solution for operators with Hölder
          continuous coefficients .............................. 67

10 Assumptions, main results and overview of Part II ........... 67
11 Fundamental solution for H: the Levi method ................. 74
12 The Cauchy problem .......................................... 86
13 Lower bounds for fundamental solutions ...................... 89
14 Regularity results .......................................... 93

Part III: Harnack inequality for operators with Hölder 
          continuous coefficients .............................. 99

15 Overview of Part III ........................................ 99
16 Green function for operators with smooth coefficients on
   regular domains ............................................ 101
17 Harnack inequality for operators with smooth
   coefficients ............................................... 108
18 Harnack inequality in the non-smooth case .................. 111

Epilogue ..................................................... 115

19 Applications to operators which are defined only locally ... 115
20 Further developments and open problems ..................... 117

References .................................................... 121


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:58 2019. Размер: 6,448 bytes.
Посещение N 1797 c 04.05.2010