Haustein E. Fluorescence fluctuation spectroscopy on freely diffusing and spatially confined single molecules: diss. … dr. rer. nat. (Dresden, 2005). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаHaustein E. Fluorescence fluctuation spectroscopy on freely diffusing and spatially confined single molecules: diss. … dr. rer. nat. - Dresden: Technische Universitat Dresden, 2005. - xv, 226 p.: ill., graph. - Bibliogr.: p.207-222.
 

Оглавление / Contents
 
Abstract ........................................................ v
1  Introduction ................................................. 1
   1.1  The Challenge of Life Science Research .................. 1
   1.2  Outline ................................................. 4

I  Theoretical Basis ............................................ 7

2  Basic principles of fluorescence spectroscopy ................ 9
   2.1  One-photon excitation ................................... 9
   2.2  Multi-photon processes ................................. 10
   2.3  Fluorescence Lifetime .................................. 11
   2.4  Some dyes .............................................. 13
        2.4.1  Autofluorescent Proteins ........................ 13
        2.4.2  Organic Chromophores ............................ 14
        2.4.3  Quantum Dots .................................... 14
3  Fluorescence Correlation Spectroscopy ....................... 15
   3.1  Historic overview and principles ....................... 15
   3.2  1-Photon excitation .................................... 16
        3.2.1  The auto-correlation function ................... 16
        3.2.2  Derivation of correlation functions ............. 19
               3.2.2.1  Determining the concentration
                        correlation function - general
                        approach ............................... 23
               3.2.2.2  Translational diffusion ................ 25
               3.2.2.3  Auto-correlation function for
                        multiple species ....................... 27
               3.2.2.4  Active transport ....................... 28
               3.2.2.5  Unimolecular reactions ................. 29
               3.2.2.6  Other processes ........................ 32
        3.2.3  Cross-correlation ............................... 34
        3.2.4  Coincidence ..................................... 36
        3.2.5  Triple-Correlation .............................. 37
        3.2.6  Triple-Coincidence .............................. 38
   3.3  Caveats ................................................ 39
        3.3.1  Influence of solvent viscosity η and
               refractive index n .............................. 39
        3.3.2  Influence of different brightnesses ............. 42
               3.3.2.1  Crosstalk but no change in brightness
                        upon binding ........................... 42
               3.3.2.2  Crosstalk and change in brightness
                        upon binding ........................... 45
               3.3.2.3  Uncorrelated background ................ 47
4  Fluorescence Resonance Energy Transfer ...................... 49
   4.1  spFRET ................................................. 49
   4.2  triFRET ................................................ 54
        4.2.1  Linear energy transfer cascade (B -> Y -> R) .... 59
        4.2.2  Energy transfer to two acceptors, no triFRET
               (R <- В -> Y) ................................... 60
        4.2.3  Linear energy transfer cascade (B -> Y -> R)
               and direct FRET (B -> R) ........................ 61
5  Time-correlated single-photon counting ...................... 63
   5.1  Principles of TCSPC .................................... 63
   5.2  Caveats of TCSPC ....................................... 64
        5.2.1  Timing .......................................... 64
        5.2.2  Pulse pileup .................................... 65
        5.2.3  Effects of laser repetition frequency ........... 65
   5.3  Example of a TCSPC measurement ......................... 66
   5.4  Analysis of Fluorescence Decays ........................ 67
   5.5  Single molecule measurements ........................... 68
        5.5.1  Continuous flow mode ............................ 68
        5.5.2  FIFO (Time-Tag) Mode ............................ 68
        5.5.3  Burst analysis .................................. 70
6  Optical Trap ................................................ 73
   6.1  Short historic overview ................................ 73
   6.2  Principles ............................................. 73
   6.3  Biological implications ................................ 77

II  Experimental Realisation ................................... 79

7  Experimental Setup .......................................... 81
   7.1  Experimental Setup ..................................... 81
   7.2  Laser sources .......................................... 84
        7.2.1  Continuous-wave one-photon excitation ........... 84
        7.2.2  Two-photon excitation ........................... 85
        7.2.3  Pulsed one-photon excitation .................... 85
   7.3  Mirrors and filters .................................... 87
   7.4  Detectors .............................................. 89
8  Data acquisition electronics and software ................... 91
   8.1  Hardware correlator .................................... 91
   8.2  TCSPC card ............................................. 92
   8.3  Data analysis software ................................. 93
        8.3.1  Commercial programmes ........................... 93
        8.3.2  Custom-written software ......................... 93
9  Sample Preparation .......................................... 97
   9.1  Sample cells ........................................... 97
        9.1.1  Types of sample cells ........................... 97
               9.1.1.1  Cover slides ........................... 97
               9.1.1.2  Sandwich Cells ......................... 97
               9.1.1.3  Large volume sample chambers ........... 98
        9.1.2  Coating of coverslides .......................... 99
               9.1.2.1  Quartz coverslides ..................... 99
               9.1.2.2  Coating with BSA (bovine serum
                        albumin) ............................... 99
               9.1.2.3  Silanised coverslides .................. 99
               9.1.2.4  Coating with Poly-L-Lysine ............ 100
               9.1.2.5  Coating with PEG (polyethylene
                        glycol) ............................... 100
   9.2  Chromophores .......................................... 100
        9.2.1  Autofluorescent proteins ....................... 101
        9.2.2  Synthetic chromophores ......................... 102

III Experimental Results ...................................... 105

10 Scanning cross-correlation ................................. 107
   10.1 Introduction .......................................... 107
   10.2 Immobilising single molecules ......................... 109
   10.3 Experimental Setup .................................... 110
   10.4 Theory ................................................ 111
   10.5 Results and Discussion ................................ 112
   10.6 Conclusions and Outlook ............................... 117
11 Structural changes in UvrB monitored by spFRET ............. 119
   11.1 Nucleotide excision repair (NER) ...................... 119
   11.2 The crystal structure of a sequence homologue ......... 121
   11.3 The padlock model ..................................... 122
   11.4 Sample preparation .................................... 123
   11.5 Experimental details .................................. 124
   11.6 Bulk measurements ..................................... 126
   11.7 Single-molecule measurements .......................... 133
        11.7.1 Binding of UvrB317 to dsDNA .................... 133
        11.7.2 Binding of UvrB276 to dsDNA .................... 139
        11.7.3 Binding of ssDNA ............................... 142
   11.8 Discussion ............................................ 142
        11.8.1 Binding of different cofactors ................. 144
        11.8.2 Selective binding of DNA ....................... 144
        11.8.3 ATPγS prevents helicase activity ............... 145
        11.8.4 Binding of ssDNA ............................... 145
        11.8.5 Overview ....................................... 145
12 Three-colour Measurements .................................. 149
   12.1 DNA ................................................... 149
        12.1.1 The biological system .......................... 149
        12.1.2 Experimental details ........................... 151
        12.1.3 Bulk measurements .............................. 152
               12.1.3.1 Fluorescence spectra .................. 152
               12.1.3.2 Fluorescence lifetime ................. 155
        12.1.4 Correlation techniques ......................... 158
        12.1.5 Singlc-molcculc triFRET ........................ 163
        12.1.6 Discussion ..................................... 166
   12.2 EcoRI ................................................. 167
        12.2.1 The biological system .......................... 167
        12.2.2 Sample preparation ............................. 168
        12.2.3 Experimental details ........................... 169
        12.2.4 Single-molecule measurements ................... 170
               12.2.4.1 The Educts ............................ 171
               12.2.4.2 The products .......................... 171
               12.2.4.3 Kinetics of Alexa546-EcoRI cutting
                        Alexa488-DNA-Cy5 ...................... 172
        12.2.5 Discussion ..................................... 173
   12.3 UvrABC ................................................ 174
        12.3.1 The biological system .......................... 174
               12.3.1.1 GFP - UvrB - Alexa 546 and DNA -
                        Cy5 ................................... 174
               12.3.1.2 GFP - UvrC, UvrB - Alexa 546 and
                        DNA - Cy5 ............................. 175
        12.3.2 Experimental details ........................... 176
        12.3.3 Singlc-molcculc measurements ................... 177
               12.3.3.1 GFP - UvrB - Alexa 546 and DNA -
                        Cy5 ................................... 177
               12.3.3.2 GFP - UvrC, UvrB - Alexa 546 and
                        DNA - Cy5 ............................. 180
        12.3.4 Discussion ..................................... 181
13 Biomimetic containers for "single" molecules ............... 183
   13.1 Vesicle preparation ................................... 184
   13.2 Experimental setup .................................... 185
        13.2.1 One laser line for both trapping and
               fluorescence excitation ........................ 185
        13.2.2 Long term stability of the optical trap and
               the vesicles ................................... 186
        13.2.3 Separate laser lines for trapping and
               excitation ..................................... 186
   13.3 FCS in small confined compartments .................... 187
   13.4 TCSPC in single vesicles .............................. 188
        13.4.1 High chromophore concentrations ................ 188
        13.4.2 "Single" molecules ............................. 189
        13.4.3 Influence of different environments ............ 190
   13.5 Discussion ............................................ 191
   13.6 Potential applications - A feasibility study .......... 191
   13.7 Conclusions ........................................... 195
14 Summary and Outlook ........................................ 197

A  Glossary of acronyms ....................................... 201

В  Glossary of physical terms ................................. 203
   B.l  Latin ................................................. 203
   B.2  Greek ................................................. 205

Bibliography .................................................. 207

List of publications .......................................... 223

Acknowledgements .............................................. 225

Erklärung (Declaration) ....................................... 227

List of Figures

1.1  Protein synthesis and structural elements .................. 2
1.2  Energy landscape for protein folding ....................... 3
1.3  Myoglobin as an example for structural dynamics of
     proteins ................................................... 4
2.1  Jablonski diagram for one-photon excitation ................ 9
2.2  Fluorescence spectrum and intensity depending on 
     the excitation wavelength ................................. 10
2.3  Jablonski diagram and Feynman diagram for two-photon
     excitation ................................................ 11
2.4  Comparison of one-and two-photon excitation and emission
     spectra ................................................... 12
2.5  Approximate sizes of various molecules .................... 13
3.1  Molecular mechanisms causing fluorescence fluctuations .... 15
3.2  Comparison between one- and two-photon absorption 
     processes ................................................. 16
3.3  Calculation of the auto-correlation function .............. 17
3.4  Dependence of the auto-correlation curve on 
     the concentration and the size of the molecules ........... 18
3.5  Simulated auto-correlation curve .......................... 33
3.6  Principle of dual-colour cross-correlation ................ 35
3.7  Influence of viscosity and refractive index on 
     the auto-correlation curve ................................ 40
3.8  Influence of viscosity and refractive index on 
     brightness and apparent concentration ..................... 41
3.9  Changes in the correlation amplitudes in the presence
     of spectral crosstalk ..................................... 44
3.10 Changes in the correlation amplitudes in the presence
     of spectral crosstalk and quenching ....................... 46
4.1  FRET: Schematic diagram and spectra of two fluorophores ... 50
4.2  The orientation factor к2 ................................. 52
4.3  Potential arrangement of the chromophores in a simple 
     triple FRET cascade ....................................... 54
5.1  Information of a single fluorescence photon ............... 63
5.2  Principle of TCSPC and possible applications .............. 64
5.3  Pile-up effects in fluorescence decay curves .............. 65
5.4  Normalised fluorescence decay for TMR ..................... 66
5.5  Convoluting the instrument and the impulse response 
     function yields the measured data ......................... 67
5.6  Different continuous flow measurements .................... 69
5.7  Burst analysis: Identification of single-molecule
     passages through the focus ................................ 70
5.8  Photon arrival times vs. intensity for identifying 
     bursts .................................................... 71
6.1  Optical trapping of a dielectric sphere ................... 74
6.2  Ray optical explanation of an optical trap ................ 74
6.3  Scattering force, gradient force and total force exerted
     on a sphere ............................................... 76
6.4  Direction and magnitude of gradient force, scattering 
     force and their vector sum ................................ 77
7.1  Schematic FCS Setup ....................................... 81
7.2  Microscope and detection unit for one- and two-channel
     detection ................................................. 82
7.3  Detection units for one-, two- and three-channel 
     detection ................................................. 83
7.4  Available laser wavelengths for fluorescence excitation ... 84
7.5  Cross-section of the Ti:Sa laser beam ..................... 85
7.6  Auto-correlation curves and intensity traces of Alexa488
     for cw and pulsed one-photon excitation ................... 86
7.7  Brightness of Alexa 488 depending on the excitation mode
     and incident power ........................................ 87
7.8  Stokes Raman spectra of the OH band in water .............. 87
7.9  Wavelength of the Raman band of water depending on 
     the incident wavelength ................................... 88
8.1  Screenshots of the two-channel programme .................. 94
8.2  Programme handling ........................................ 95
8.3  Screenshots of the three-channel programme ................ 96
9.1  Different types of sample cells ........................... 98
10.1 Two different scanning patterns .......................... 109
10.2 Experimental setup for two-colour scanning fluorescence
     cross-correlation ........................................ 110
10.3 GFP and DsRed immobilised in a polyacrylamide matrix ..... 113
10.4 Stepwise bleaching of a single immobilized DsRed or
     GFP molecule ............................................. 114
10.5 FCS curves of the freely diffusing molecules in
     solution ................................................. 114
10.6 FCS curves acquired during a line scan of immobilized
     molecules ................................................ 115
10.7 Comparison of the cross-correlation amplitudes of
     fusion proteins and the unlinked chromophores ............ 115
10.8 Scanning FCCS curves of Cy2-Cy5-labelled cholera toxin
     on a cell membrane ....................................... 116
11.1 Damage recognition in nucleotide excision repair ......... 120
11.2 Schematic structure of the UvrB-DNA complex .............. 122
11.3 Crystal structure of UvrВ and label positions ............ 124
11.4 Absorption and emission spectra of GFP and Rhodamine
     Red X .................................................... 125
11.5 Overlap integral ......................................... 126
11.6 Normalised fluorescence emission spectra of 
     GFP-UvrB276 ............................................... 127
11.7 Normalised fluorescence emission spectra of double-
     labelled UvrB317 .......................................... 128
11.8 Larger view of the peaks in figure 11.7 .................. 128
11.9 Normalised fluorescence emission spectra of double-
     labelled UvrB276 .......................................... 129
11.10 Larger view of the peaks in figure 11.9 ................. 129
11.11 Auto-correlation curves for UvrB317GFP only with 
      different binding partners .............................. 130
11.12 Fluorescence decay curves for both mutants for 
      different buffer conditions ............................. 131
11.13 Fluorescence decay curves and deconvolutions for both
      mutants ................................................. 132
11.14 Distribution of FRET efficiencies for Alexa 488 and
      for UvrB317GFP only ........................................ 133
11.15 FRET efficiencies for UvrB317 in the presence of Mg2+,
      ATPγS and UvrA2 ......................................... 134
11.16 FRET efficiencies for UvrB317 in the presence of ATP,
      UvrA2 and DNA ........................................... 135
11.17 Inter-chromophore distances for UvrB317 in 
      the presence of Mg2+, ATPγS, ATP and UvrA2 ............... 136
11.18 Inter-chromophore distances for UvrB317 in 
      the presence of ATP, UvrA2 and both damaged and 
      intact DNA .............................................. 137
11.19 Inter-chromophore distances for UvrB317 in 
      the presence of different cofactors ..................... 140
11.20 Inter-chromophore distances for UvrB276 in 
      the presence of different cofactors ..................... 141
11.21 Inter-chromophore distances for UvrB317 and UvrB276
      in the presence of ssDNA ................................ 143

12.1 Positions of the three dyes attached to the 28-mer
     dsDNA .................................................... 150
12.2 FRET efficiencies for the different chromophore 
     combinations ............................................. 150
12.3 Normalised emission spectra of the three chromophores
     and transmission spectra of the filters .................. 152
12.4 Normalised spectra of the chromophore triplets and 
     the single dyes attached to the dsDNA .................... 153
12.5 Efficiency of triFRET for RhG-TAMRA-Cy5 .................. 154
12.6 Annealing kinetics of the TAMRA-labelled ss-14-mer and
     the corresponding RhG-Cy5-labeled oligonucleotide ........ 155
12.7 Fluorescence decay curves for different chromophore-
     combinations on the DNA .................................. 156
12.8 Determining the molecular brightness via FCS ............. 158
12.9 Cross-correlation amplitudes for the three pairwise
     cross-correlations ....................................... 160
12.10 Coincidence and triple-coincidence ...................... 161
12.11 Annealing kinetics of the TAMRA-labelled ss-14-mer
      and the corresponding RhG-Cy5-labeled oligonucleotide 
      monitored by FCS ........................................ 162
12.12 2D-histograms for RhG acting as primary donor ........... 164
12.13 2D-histograms for TAMRA acting as primary donor ......... 165
12.14 2D-histograms of different oligomer mixtures all 
      giving the same equimolar chro-mophore concentrations ... 166
12.15 The system under investigation: EcoRI-Alexa 546 and
      21-mer Alexa 488-dsDNA-Cy5 .............................. 167
12.16 Reaction scheme for monitoring the binding and 
      cleavage of DNA by EcoRI ................................ 169
12.17 Normalised emission spectra of the three chromophores 
      and transmission spectra of the filters ................. 170
12.18 Two-dimensional histograms for Alexa 488 - DNA - Cy5
      and EcoRI - Alexa546 .................................... 171
12.19 Two-dimensional histograms for a mixture of Alexa 
      488 - DNA - Cy5 and EcoRI -Alexa546 with EDTA and 
      MgCl2 ................................................... 172
12.20 Kinetics of the endonucleolytic cleavage reaction ....... 173
12.21 Crystal structure of UvrB and label positions for 
      triFRET ................................................. 175
12.22 NER cascade and lapel positions for triFRET using
      UvrABC and DNA .......................................... 176
12.23 Two-dimensional histograms for GFP - UvrB - Alexa 546
      and DNA - Cy5 ........................................... 178
12.24 Two-dimensional histograms for GFP - UvrB - Alexa 546
      and unlabelled DNA ...................................... 179
12.25 Two-dimensional histograms for GFP - UvrB and DNA -
      Cy5 ..................................................... 179
12.26 Two-dimensional histograms for GFP - UvrC, UvrB - 
      Alexa 546 and DNA - Cy5 ................................. 180
12.27 Two-dimensional histograms with reduced ATP ............. 181
13.1 DsRed immobilised in PAA ................................. 183
13.2 Different kinds of vesicles .............................. 184
13.3 Principle of trapping a vesicle with the Ti:Sa laser ..... 185
13.4 Survival probability of vesicles ......................... 186
13.5 FCS curves of Fluorescein contained within a vesicle ..... 187
13.6 Intensity and fluorescence lifetime decay curves for
     fluorophores within a vesicle ............................ 189
13.7 Bleaching of a DsRed-oligomer contained within 
     a vesicle ................................................ 189
13.8 Fluorescence decay of GFP-DsRed in different 
     environments ............................................. 190
13.9 One-channel setup for characterising E. coli ............. 192
13.10 Burst distribution for diffusing E. coli and bacteria
      in a directed flow ...................................... 193
13.11 Sorting E. coli by fluorescence lifetime ................ 194

List of Tables

3.2  Coefficients for the rotational correlation function ...... 33
3.4  Brightness and concentration of green and red
     chromophores .............................................. 42
7.1  Properties of different laser diode heads ................. 86
8.1  Binary data format of the SPC-600 TCSPC card for 32-bit
     resolution ................................................ 92
8.2  Binary data format of the SPC-600 TCSPC card for 48-bit
     resolution ................................................ 92
9.1  Characteristics of two commonly used fluorescent 
     proteins ................................................. 101
9.2  Characteristics of various organic chromophores .......... 102
9.3  Characteristics of various rhodamine dyes ................ 103
11.1 Fluorescence lifetimes of GFP-UvrB in different buffer
     conditions (linear fit) .................................. 127
11.2 Fluorescence lifetimes of GFP-UvrB in different buffer
     conditions (deconvolution) ............................... 130
11.3 FRET efficiency and average distance between 
     the chromophores ......................................... 132
11.4 Mean inter-chromophore distances for UvrB317 ............. 139
11.5 Mean inter-chromophore distances for UvrB276 ............. 139
11.6 Mean inter-chromophore distances for UvrB276 in 
     the presence of ATP7S .................................... 141
11.7 Inter-chromophore distances for UvrB317 and UvrB276
     in the presence of ssDNA ................................. 142
11.8 Structural changes predicted and observed 
     experimentally upon binding of Mg2+, ATP and UvrA2 ....... 146
11.9 Structural changes predicted and observed 
     experimentally upon DNA binding .......................... 147
12.1 Approximate distances between the different 
     chromophores ............................................. 151
12.2 Comparison between calculated and measured FRET 
     efficiencies ............................................. 154
12.3 Fluorescence lifetimes of the different chromophore
     combinations ............................................. 157
12.4 Comparison between calculated and measured FRET 
     efficiencies ............................................. 157
12.6 Relative brightness values for the three chromophore
     pairs .................................................... 159
12.7 FRET efficiencies determined from the single-molecule
     measurements ............................................. 165
12.8 Approximate distances between the different 
     chromophores ............................................. 169
12.9 Forstcr radii for triFRET in UvrB ........................ 177


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:54 2019. Размер: 31,124 bytes.
Посещение N 2212 c 06.04.2010