Навигация
Дайджест за другие годы
Февраль
2008 г.
Российская наука и мир
(по материалам зарубежной электронной прессы)
январь февраль март апрель май июнь июль август сентябрь октябрь ноябрь декабрь

    AlphaGalileo / 31 January 2008
    From Bacterium to Semiconductor
    Белки фотосинтезирующих бактерий можно использовать для генерации фототока. В России этой проблемой занимаются исследователи МГУ, Института проблем химической физики РАН, Института прикладной физики РАН и Института химической физики РАН.

Proteins of photosynthetic bacteria can be used to generate photocurrent. How to do that - this can be learnt from the article by Russian researchers.
Researchers from different countries are accommodating to their purposes proteins of photosynthesis system bacteria. They are used as an active component of the photocurrent generation chain in the sensory and energy-storing systems. In Russia, the problem is being addressed by specialists of the Lomonosov Moscow State University, Institute of Problems of Chemical Physics (Russian Academy of Sciences), Moscow Institute of Applied-Physics and the Institute of Chemical Physics (Russian Academy of Sciences). The researchers built proteins of reactionary center for purple bacteria photosynthesis into porous nano-crystalline films of titanium oxide.
Proteins of the photosynthesis system (bacteriochlorophyll, bacteriopheophytin and ubiquinones) - are natural solar energy bioaccumulators. Excited bacteriochlorophyll molecule transmits electron along the chain to other proteins of photosystem. These proteins attract attention of biophysicists due to high quantum yield of reaction of primary charge division and relative stability of these charges. As of today, there exist two different approaches to creation of hybrid light-storing and sensitive devices based on bacterial proteins. For elements of the first type, a layer of photosensitive molecules are applied on a metal (golden or platinum) or graphite plate. At that, the proteins should be orientated on the plate surface in a certain way. Depending on the protein disposition on the electrode, there occurs either a cathodic charge (in this case, the electron is carried from the electrode to proteins), or an anodic charge, if there occurs reverse direction current. In the devices of the second type, the proteins are applied on meso-porous semicoductors made of metal oxide. In such systems, excited protein molecules transmit very quickly, within fractions of a picosecond, an electron into the semiconductor's conduction band. Besides, the pores are so tightly stuffed with proteins, that the special procedure of their orientation may be omitted. Proteins will get orientated spontaneously on the electrode hydrophobic surface, the donor section being turned to the semiconductor.
The photocurrent density is directly dependent on both the porous film structure and on the quantity of protein molecules on the electrode. Therefore, the Russian researchers tried to obtain thick film (4 micrometers thick) made of titanium oxide. The researchers selected a structure which is optimal to maximum protein sorbtion.
The TiO2 meso-porous films are obtained from nano-crystalline powders, which are added into special paste. They were applied on glass with a conducting covering of titanium-indium oxide. The film was dried up and calcined for 30-60 minutes at 550 degrees. Calcination adds mechanical strength to films. Then the plate was soaked in the photosynthetic proteins solution, and the main electrode was ready. The researchers managed to get a film with small pores and large specific surface area (300 m2/g). Thanks to the film depth and porosity, a lot of proteins get stuck to it, their concentration in the sample being 160 times higher than that in the solution. Proteins on the main electrode preserve activity even after the two week keeping in a refrigerator. Illuminating the electrode by red light, which only proteins react to, generates the anodic photocurrent of almost 2 microamperes. Titanium oxide also reacts to white light, but presence of the photosynthesis system proteins in the electrode increases the photocurrent by more than twice.
The researchers note that nano-porous semiconductors possess not only a very high sorbing ability, but also tremendous energy diversity of surface states, which significantly impacts the electron transmission process.

© AlphaGalileo Foundation 2003.
* * *
    Techno-science.net - France / le Samedi 2 Février 2008
    Vulnérabilité du génome face à une faible dose de radiation chronique
    От малой дозы хронической радиации геном страдает сильнее, чем от кратковременного мощного излучения. Об этом свидетельствуют опыты, проведенные учеными Института теоретической и экспериментальной биофизики РАН и Института физики высоких энергий.

Dans le cadre du programme "Sciences fondamentales en médecine" soutenu par le présidium de l'Académie des Sciences de la Russie (ASR), des scientifiques russes ont constaté qu'une faible dose de radiation chronique s'avère plus destructive sur le génome humain qu'une forte radiation ponctuelle.
Cette étude menée par les chercheurs de l'Institut de biophysique théorique et expérimentale de l'ASR et de l'Institut de physique des hautes énergies, a pour but de déterminer l'influence du rayonnement chronique sur les astronautes et les pilotes volant à des altitudes variant de 10 km à 30 km. En effet, le rayonnement ionisant auquel sont exposés les pilotes et les astronautes peut causer des maux importants, parmi lesquels des tumeurs malignes.
La difficulté de cette étude est liée à la nature changeante de chaque vol à haute altitude ainsi qu'à sa non reproductibilité, rendant impossible le suivi médical exact des pilotes et les mesures des rayonnements ionisants. Les chercheurs ont alors décidé de reproduire l'expérience sur terre avec des souris. Ils les ont soumis à des champs de radiation à l'aide d'un accélérateur de particules. Ayant analysé le sang et les globules blancs des souris, les scientifiques russes ont alors constaté que par un rayonnement variant de 21,5 cGy (centi-Gray) à 31,5 cGy le niveau de détérioration de l'ADN pouvait atteindre 6%. Cette détérioration provoque l'instabilité du génome. Un rayonnement de 31,5 cGy est considéré comme faible alors qu'avec une dose de 150 cGy de rayonnement ponctuel, soit 5 fois supérieure que la précédente, ils n'ont détecté pratiquement aucune détérioration.
Ceci est lié au caractère chronique de la radiation causant des formations importantes d'oxygènes actifs. Cependant les chercheurs russes n'ont pas encore déterminé la nature de ces détériorations et ils poursuivent leurs études afin de savoir si cette instabilité génétique peut apparaître dans d'autres types de cellules.

* * *
    Techno-science.net - France / le Lundi 4 Février 2008
    Quand le pétrole réapparaît dans d'anciens gisements
    С экономической точки зрения выгоднее не разрабатывать (а сначала находить) новые месторождения нефти, а обратить внимание на старые. Тем более, что иногда нефть вновь появляется в, казалось бы, давно отработанных скважинах. Объяснение этому явлению предлагают специалисты Института проблем нефти и газа под руководством академика А.Н.Дмитриевского.

Dans le contexte actuel, il peut être économiquement plus rentable de s'intéresser aux anciens gisements de pétrole que d'en chercher de nouveaux. Telle est la conclusion étonnante que viennent de livrer des chercheurs de l'Institut des problèmes du pétrole et du gaz dans les "Rapports de l'Académie des sciences de la Russie". Du pétrole réapparaît de temps à autre dans d'anciens gisements et puits exploités depuis longtemps. Les spécialistes russes sous la direction de l'académicien Anatoli Dmitrievski ont proposé une explication à ce phénomène.
L'écorce terrestre ressemble à la pâte feuilletée d'un gâteau. Elle est faite de couches dures et de couches poreuses et crevassées, remplies de fluides divers, y compris du pétrole. A certains endroits, l'écorce est traversée par un réseau de fissures et de fractures. Les fractures forment des cavités creuses, disposées presque horizontalement et réunies en un réseau. Sous l'action des forces tectoniques, ce système complexe est en mouvement perpétuel. Les couches bougent, les fissures s'élargissent et des liquides commencent à affluer depuis les couches poreuses voisines dans les cavités qui se forment. Selon les scientifiques, ce mécanisme de déplacement des liquides est présent aussi bien dans les fractures que dans les fines couches fissurées qui s'étendent sur des distances considérables et qui s'opèrent à une profondeur de 10 à 15 km.
Le déplacement des liquides provoqué par l'élargissement des cavités internes revêt un caractère variable. Tantôt le pétrole afflue, tantôt il reflue. Le régime et la période des oscillations dépendent de la taille de la région concernée. Le gisement de Romachkino, au Tatarstan, est exemplaire à cet égard. La quantité de pétrole qui en a été extraite dépasse d'ores et déjà considérablement les réserves prouvées précédemment. Selon la compagnie pétrolière Tatneft, plus de 65% du pétrole produit au Tatarstan est issu d'anciens gisements, déjà exploités à 80%.
Une prospection approfondie de certaines couches a permis au cours des 25 dernières années d'augmenter de moitié les réserves de pétrole. Les scientifiques ont également découvert que la superficie des gisements pétroliers et de leurs réserves augmente avec l'accroissement de la densité du réseau des fractures.

* * *
    LabTechnologist.com - London, UK / 07/02/2008
    Russian laser aids in defining nanoparticles
  • By Wai Lang Chu
    Российские ученые создали прибор, способный определять размер микро- и наночастиц посредством лазерной технологии. Это прибор намного точнее, чем существующие на данный момент аналоги.

Russian scientists have created a device that determines micro- and nano-particle size using a laser technology that claims to be more accurate than methods currently used in the laboratory and could find a role in pharmaceutical quality control.
Most of the technological development in the area of particle size analysis has been in the sub micron area and news of this novel device raises hope of a viable and cheaper alternative to current techniques.
Microscopy with optical scanning and image analysis, sieving, and particle counting by optical and electrical counters are the current standards although each has limitations that make it difficult or impossible to use in certain laboratory scenarios.
Specialists of the St. Petersburg Research-and-Production Firm for Analytical Instrument-Making (LUMEX) in Moscow, Russia, have designed and produced an analyser that not only measures the average diameter of particles, but also determines quantities of a specified particle size within a mixture.
This is particularly important in the drug discovery and diagnostic processes as control or monitoring of operations such as crystallisation, filtration and preparation of the degree of reaction often depend on the ability to measure the size and concentration of small particles that are components of the liquid.
The device, known as Laska, measures the angle of diffused light deflected by the microparticle. The multielement detector records this scattered radiation, allowing the intensity to be measured. The angle of deflection is determined by the size of each particle.
"Our device already enables to perform analysis of particles of up to 500 nanometres in size, i.e., up to half a micron," commented Vladimir Krivoshlyk, head developer at LUMEX.
"Laska was intended for the analysis of rather big particles, with their diameter being no less than a micron. However, we are working now on the analyser modification, which would allow to measure sizes of smaller particles," he added.
The device may potentially have its uses in aspects of quality control for pharmaceuticals where knowledge of particle size distribution and particle shape of pulverised material or suspensions can be a vital factor in filtering out substandard drugs.
The analytical instrument market has struggled to fill this niche area in which current methods battle with each other to become the industry standard. Techniques such as sieve analysis involve passing the material being sized through openings of a particular standard size in a screen.
The particle-size distribution is then reported as the weight percentage retained on each of a series of standard sieves of decreasing size and the percentage passed of the finest size.
Surface Area Analysis involves measurement of the exposed external area of a particle and is achieved by detecting the amount of nitrogen given off after absorption, considering one atomic layer of nitrogen adsorbed. The technique is normally used for characterisation of non-spherical and porous particles.
Particle shape can also be documented with a microphotograph. Particle shape can be quantified by using image analysis in conjunction with SEM. The image analysis unit has the capability to generate an array of chords across the particle to arithmetically define the shape of the particle.

© 2008 - Decision News Media SAS - All Rights Reserved.
* * *
    Actualités News Environnement - Lyon, France / 01/02/2008
    Les oiseaux migrateurs peuvent-ils réellement se repérer et retrouver leur chemin ?
  • Par Sandra BESSON
    Недавние исследования позволяют предположить, что перелетные птицы вполне способны выбирать направление и определять свое местонахождение. Основание к такому предположению сотрудникам Зоологического института РАН дали наблюдения за тростниковыми камышовками.

Une étude récemment publiée suggère que certains oiseaux migrateurs seraient réellement capables de se diriger et de se repérer, quel que soit l'endroit où ils se trouvent. Cela signifie qu'ils pourraient identifier au moins deux coordonnées géographiques.
Les Rousserolles effarvattes eurasiatiques capturées pendant leur migration puis relâchées à 1000 kilomètres de leur trajet habituel ont été capables de retrouver leur chemin d'origine, d'après une étude qui suggère que certains oiseaux peuvent réellement se repérer et se diriger.
Cela signifie que ces oiseaux pourraient identifier au moins deux coordonnées qui correspondent à peu près à la latitude et à la longitude géographiques et qu'ils ne seraient pas limités par des directions nord-sud comme beaucoup le pensaient, d'après les déclarations des chercheurs jeudi.
"Ces découvertes sont surprenantes et présentent un nouveau défi intellectuel pour les chercheurs qui étudient les oiseaux migrateurs. Ils doivent se demander ce qui permet aux oiseaux migrateurs de déterminer leur position est-ouest" a écrit dans le journal Current Biology Nikita Chernetsov, de l'Institut Zoologique en Russie.
Les chercheurs ont découvert qu'après avoir relâché les Rousserolles effarvattes à plus de 1000 kilomètres à l'est de l'endroit où elles avaient été attrapées, les oiseaux migrateurs ont corrigé leur trajectoire en changeant de direction pour revenir sur leur chemin habituel.
D'autres études ont suggéré que les oiseaux utilisaient la position du soleil ou des informations géomagnétiques pour déterminer leur latitude, qui définit la localisation sud ou nord, d'après les déclarations des chercheurs.
L'équipe de chercheurs russes a déclaré qu'il était possible que les oiseaux migrateurs tels que les Rousserolles effarvattes puissent dépendre de deux horloges internes, une qui déterminerait "l'heure de chez eux" et l'autre l'heure de leur repère d'hiver.
Les informations géomagnétiques pourraient également jouer un rôle dans leur capacité d'orientation.
"Nous avons vu de manière expérimentale que les oiseaux migrateurs de longue distance et intercontinentaux pouvaient corriger leurs déplacements est-ouest pendant leur migration de retour au printemps" a déclaré Nikita Chernetsov.
"Cela signifie qu'ils peuvent déterminer leur longitude géographique, même si nous ne savons pas encore comment cela est possible".
Pour mémoire, la Rousserolle effarvatte (Acrocephalus scirpaceus) est une fauvette des marais. C'est un passereau de petite taille de 12 à 13 cm de long avec une envergure de 19 cm, pesant entre 11 et 15 g.
C'est un oiseau qu'on trouve en Europe sauf en Scandinavie et dans l'ouest de l'Asie, plutôt au Moyen-Orient. C'est la plus fréquente des rousserolles en Europe. C'est un migrateur transaharien. Il part en Afrique centrale et australe à la fin de l'été pour revenir en avril-mai.

© RecyConsult.
* * *
    RedOrbit - Dallas, TX, USA / Thursday, 7 February 2008
    Russian Scientists Designing Industrial Base on the Moon
    ФГУП "Исследовательский Центр имени М.В.Келдыша" разрабатывает технологии для создания российской промышленной базы на Луне.

The Keldysh research and development centre has been creating a technology for building a Russian industrial base on the moon, the Interfax-AVN news agency reported on 31 January.
"A industrial base has to be located on the moon's equator. This will minimize the cost on delivering freight and will make it possible to use solar energy to a bigger advantage," the agency quoted the Keldysh centre's director, Anatoliy Koroteyev, as saying at the 32nd academic readings conference on astronautics at the Bauman Technical University in Moscow.
The scientists consider the western part of the moon's Ocean of Storms to be the primary location of a base, the agency said.
According to Koroteyev, the main goal for building a base on the moon is to extract its mineral resources. To achieve this, around 700 tonnes of various freights and equipment must be shipped there to be operated by a team of six.
To extract the moon's mineral resources, scientists of the Keldysh centre have designed a device called Lunokop (moon digger). When moving on the moon's surface, Lunokop will suck in dust, like a vacuum cleaner, and then heat it up to the temperature required for the emission of water, hydrogen, oxygen and other gases.
Electric energy for a base is to be manufactured by 5-MW solar batteries or a 100-MW nuclear power plant. The latter is less desirable, though, Koroteyev said, as the nuclear power plant may cause nuclear pollution of the moon.

2002-2007 redOrbit.com. All rights reserved.
* * *
    Space Fellowship - UK / February 8th, 2008
    New cycle of solar activity
    Судя по последним данным, полученным космическими обсерваториями, начинается новый цикл солнечной активности. Связь между активностью Солнца и самыми разнообразными процессами на нашей планете выявлена уже давно. Явления, связанные с воздействием солнечного излучения на геомагнитные, атмосферные, биологические и другие процессы на Земле - предмет особой дисциплины, называемой солнечно-земными связями. Ее основные идеи были заложены в начале ХХ века трудами выдающихся российских ученых Владимира Вернадского, Константина Циолковского и Александра Чижевского.

MOSCOW - (Yury Zaitsev for RIA Novosti) - Space-based solar observatories have recently registered an area with an enhanced magnetic field on the surface of the Sun. This is a sure sign that the Sun has entered its 24th activity cycle. This event will bring no good to the Earth residents.
Wars, revolutions, cultural, scientific, and technical breakthroughs, the suicide rate, calamities and man-made disasters are all associated with the Sun's activity. Understanding the nature of this interaction and forecasting solar activity levels is an urgent task for modern science.
Small and short splashes of magnetic activity with a reverse magnetic field were registered last August. But apparently, this was a sporadic prelude to a new cycle against the backdrop of the minimal activity of the outgoing one.
Scientists began to assign numbers to solar cycles 250 years ago, when they started regular observations of the number of spots on the Sun's visible disc.
There are very few sunspots in the beginning of a cycle. Over several years, their number grows to a certain maximum, and then slowly drops back down to the minimum. Hence, a period when the number of sunspots is the biggest is called the solar maximum of a cycle, and when there are almost none, the solar minimum. The alternation of maximums and minimums takes place in 11 years on average. This is why it is called the 11-year sun cycle.
During the past 80 years, the flow of the cycles speeded up a bit, and their average duration has gone down to about 10 and a half years. Obviously, the Sun has some inner clock, which sets the duration of each particular cycle, but scientists do not yet know how it works.
Maximums and minimums of activity may affect the climate. In the latter half of the 17th century, solar activity was very weak. Average annual temperatures in Europe dropped considerably, signaling the beginning of a minor ice age. This was probably caused by a reduced solar impact on the Earth's climate.
Today, solar activity is the highest it has been in the last thousand years. In the previous century, the number of sunspots increased many times over. At the same time, in the last few years the climate has become much warmer by geological measures. It is quite possible that anthropogenic pollution of the environment is making a contribution to this process. But many scientists believe that global climate change is primarily linked with solar activity.
The previous, 23rd cycle was abnormally intensive. A solar flare on October 23, 2003 was the most powerful one during the entire history of observations. The monitoring instruments went off the charts, and scientists failed to precisely measure the huge amount of energy released.
Luckily, the flare occurred at the edge of the solar halo. If such a burst takes place in the center of the solar disc, it may trigger serious consequences which are difficult to predict.
Recently, extraordinary events have also been taking place on Jupiter. For the first time in the history of observations, a second mysterious red spot has appeared on its surface. The period of the Jupiter revolution around the Sun is very similar in its duration to the 11-year cycles of solar activity, and there may be a link between the processes taking place in the Sun and on the biggest planet of our solar system.
As for Earth, the empiric connection between solar activity and most diverse processes on our planet has long been revealed. A number of phenomena linked with the impact of solar corpuscular and electromagnetic radiation on the geomagnetic, atmospheric, biological and other processes on Earth are a subject of the branch of science called solar-terrestrial relationships. Leading Russian scientists Vladimir Vernadsky, Konstantin Tsiolkovsky, and Alexander Chizhevsky laid this branch's foundation in the early 20th century.
An increase in the intensity of solar wind - a flow of plasma of the solar corona that abruptly rises with the growth of solar activity - does not only cause the Aurora Borealis, but also disturbances in the magnetic field. Magnetic storms, in turn, can cause accidents in communication and power lines, and oil and gas pipelines; they directly affect physical and mental health.
Scientists are not yet able to predict the intensity of the new solar cycle or the start of its maximum. Some of them believe that the number of sunspots will reach 140 during the cycle's maximum in October 2011; others predict that there will be no more than 90 sunspots by August 2012. It will be possible to confirm or refute these forecasts a year after the maximum has passed. If solar activity rapidly intensifies, the maximum should be more powerful and take place faster than in case of a slow rise. In other words, if the maximum takes place in 2011, it will be accompanied by very high solar activity.
According to tentative estimates, the new cycle will be 30% to 50% more powerful than the previous one that was accompanied by a number of serious cataclysms.
Scientists published forecasts of solar activity only twice - in 1989 and 1996. Their forecasts were largely confirmed.

A public service provided by Space Fellowship.
* * *
    Daily Telegraph / 06/02/2008
    Time travellers from the future "could be here in weeks"
    • By Roger Highfield, Science Editor
    В ближайшее время в Европейском центре физики частиц (CERN), расположенном в Швейцарии, будут проведены испытания Большого адронного коллайдера - самого мощного ускорителя частиц в истории науки. Двое российских математиков полагают, что БАК способен создать явление, которое физики называют "замкнутой временеподобной кривой" или попросту "червоточиной". Теоретически это явление позволяет вернуться в прошлое.

The first time travellers from the future could materialise on Earth within a few weeks.
Physicists around the world are excitedly awaiting the start up of the £4.65 billion Large Hadron Collider, LHC - the most powerful atom-smasher ever built - which is supposed to shed new light on the particles and forces at work in the cosmos and reproduce conditions that date to near the Big Bang of creation.
Prof Irina Aref'eva and Dr Igor Volovich, mathematical physicists at the Steklov Mathematical Institute in Moscow believe that the vast experiment at CERN, the European particle physics centre near Geneva in Switzerland, may turn out to be the world's first time machine, reports New Scientist.
The debut in early summer could provide a landmark because travelling into the past is only possible - if it is possible at all - as far back as the point of creation of the first time machine.
That means 2008 could become "Year Zero" for temporal travel, they argue.
Time travel was born when Albert Einstein's colleague, Kurt Gödel, used Einstein's theory of relativity to show that travel into the past was possible.
Ever since he unveiled this idea in 1949, eminent physicists have argued against time travel because it undermines ideas of cause and effect to create paradoxes: a time traveller could go back to kill his grandfather so that he is never born in the first place.
But, sixty years later, there is still no fundamental reason why time travellers cannot put historians out of business.
But the Russians argue that when the energies of the LHC are concentrated into a subatomic particle - a trillionth the size of a mosquito - they can do strange things to the fabric of the universe, which is a blend of space and time that scientists called spacetime.
While Earth's gravity produces gentle distortions in spacetime the LHC energy can distort time so much that it loops back on itself. These loops are known to physicists as "closed timelike curves" and they ought, at least in theory, to allow us to revisit some past moment.
The scheme chimes with one laid out in 1988, when Prof Kip Thorne and colleagues at the California Institute of Technology, Pasadena, showed that wormholes, or tunnels through spacetime, would allow time travel, a scheme popularised by Carl Sagan in his novel - made into a film - Contact.
Prof Aref'eva and Dr Volovich believe the LHC could create wormholes and so allow a form of time travel. "We realised that closed timelike curves and wormholes could also be a result of collisions of particles," Prof Aref'eva says.
There are still plenty of obstacles for the likes of Dr Who, however. Not least of them is the fact that these are mini wormholes, so only subatomic particles are small enough to travel through them. They tell The Daily Telegraph that whether subatomic time travel in the LHC would open the doors for human scale time travellers "is a deep and interesting question" but stress that "these problems, and many others as well, require further investigations."
Probably the best we can hope for is that the LHC may show a signature of the wormholes' existence, Dr Volovich says. If some of the energy from collisions in the LHC goes missing, it could be because the collisions created particles that have travelled into a wormhole and through time.
One sticking point until now for wormhole concepts is finding an exotic kind of material capable of keeping the maw of the wormhole open for time travel.
Dark energy - a mysterious antigravity force that is thought to pervade the universe - could, they say, be just what is needed to keep the entrance to a wormhole open, at least according to one family of ideas about its nature, where it is called phantom energy.
If a blend of colliding particles and phantom energy does create a wormhole in Geneva this year, an advanced civilisation could find it in their history books, pinpoint the moment, and take advantage of their technology to pay us a visit.
"The observational evidence still allows for phantom energy," says Robert Caldwell, a physicist at Dartmouth College in Hanover, New Hampshire. "As for Aref'eva and Volovich's speculation that the LHC will produce the stuff of time machines - ugh!"
A leading scientist who believes that time travel may be possible, Prof David Deutsch of Oxford University, comments: "It's speculative in the extreme, but not cranky. For various reasons I don't think the mechanism they propose would work (i.e. provide a pathway for messages from the future) even if their speculations are true."
Dr Brian Cox of the University of Manchester adds: "The energies of billions of cosmic rays that have been hitting the Earth's atmosphere for five billion years far exceed those we will create at the LHC, so by this logic time travellers should be here already. If these wormholes appear I will personally eat the hat I was given for my first birthday before I received it."

© Copyright of Telegraph Media Group Limited 2008.
* * *
    Le Confidentiel - Paris, France / 15/02/2008
    Affaires: le russe Rosnanotech noue des liens au Japon
    • Еvelyne Сasalegno
    В ходе визита в Токио гендиректор Российской корпорации нанотехнологий (Роснанотех) Л.Меламед заявил, что в недалеком будущем российские и японские ученые и инженеры смогут сотрудничать напрямую, без посредничества официальных структур.

Dans un proche avenir, les hommes d'affaires, les ingénieurs et les chercheurs russes et japonais pourront établir des relations bilatérales directes, sans la médiation de structures officielles, a déclaré vendredi le directeur général du Consortium russe des nanotechnologies (Rosnanotech) Leonid Melamed.
La mission de Rosnanotech est "d'aider les entreprises à fournir un produit fini et à allier science et production", a-t-il affirmé à Tokyo lors de sa visite de deux jours.
Selon M. Melamed, le gouvernement russe a démontré le sérieux de ses intentions, apportant plus de 5 milliards de dollars au fonds géré par le consortium. "D'une part, nous financerons gratuitement des programmes d'envergure tels que les projets en matière d'enseignement et d'infrastructures, et d'autre part, nous procéderons au cofinancement de projets commercialement prometteurs", a déclaré le directeur général de Rosnanotech.
Interrogé sur la rentabilité des activités du consortium, il a répondu que l'obtention de bénéfices n'était pas leur objectif, "car Rosnanotech était une association à but non lucratif". A son avis, l'essentiel est d'aider les milieux d'affaires russes.
Evoquant le rôle des nanotechnologies, M. Melamed a fait remarquer: "Beaucoup prédisent une nouvelle révolution scientifique et technique dans un proche avenir, révolution qui renouvellera des classes entières de marchandises et leurs modes de fabrication. Selon ces prévisions, d'ici à 2050, 60% de la production reposera sur les nanotechnologies, et à plus courte échéance (d'ici à 2014), 17% de toutes les marchandises contiendront des composantes nanotechnologiques ou seront intégralement issues des nanotechnologies".

Copyright © 1997-2007 Digital Editions. All rights reserved.
* * *
Продолжение дайджеста за ФЕВРАЛЬ 2008 года (часть 2)
январь февраль март апрель май июнь июль август сентябрь октябрь ноябрь декабрь

предыдущий месяц
1998-2008
следующий месяц
[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск | English]
  Пожелания и письма: www@prometeus.nsc.ru
© 1997-2017 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Mon Mar 5 17:07:36 2012. Размер: 41,321 bytes.
Посещение N 3677 с 04.03.2008