1. Introduction ................................................ 1
Bibliography .................................................... 8
2. Controlled Growth of Nanowires and Nanobelts ............... 11
2.1 Introduction ............................................... 13
2.2 Oxides nanowires and nanobelts ............................. 14
2.2.1. ZnO ................................................. 14
2.2.2. SnO2 ................................................ 19
2.2.3. In2O3 ............................................... 23
2.2.4. MgO ................................................. 26
2.2.4.1. Controlled growth of MgO nanostructures .... 27
2.2.4.2. Direct observation of the growth process
of MgO nanoflowers ......................... 29
2.2.5. Al2O3 ............................................... 32
2.3 Sulfides nanowires and nanobelts ........................... 37
2.3.1. ZnS ................................................. 37
2.3.2. CdS ................................................. 42
2.4 Doping of nanowires and nanobelts .......................... 47
2.4.1. S-doped ZnO nanowires ............................... 47
2.4.2. Ce-doped ZnO nanostructures ......................... 48
2.4.3. Sn-doped ZnO nanobelts .............................. 51
2.4.4. Mn-doped ZnS nanobelts .............................. 53
Bibliography ................................................... 56
3. Design and Synthesis of One-Dimensional Heterostructures ... 67
3.1 Introduction ............................................... 69
3.2 Synthesis of one-dimensional heterostructures .............. 70
3.2.1. Coaxial core/shell structure (nanocable) and
biaxial nanowires ................................... 70
3.2.2. Heterojunction and superlattice nanowire
structure ........................................... 77
3.2.3. Complex branch structure (hierarchical structure) ... 82
3.3 Concluding remarks ......................................... 96
Bibliography ................................................... 97
4. Quasi-Zero Dimensional Nanoarrays ......................... 101
4.1 Synthesis of two-dimensional colloid crystals ............. 103
4.1.1. Drop coating ....................................... 105
4.1.2. Spin-coating ....................................... 107
4.1.3. Perpendicular withdrawing .......................... 108
4.2 Ordered nanoarrays based on two-dimensional colloidal
crystal templates ......................................... 110
4.2.1. Ordered pore arrays ................................ 112
4.2.1.1. ZnO-ordered pore arrays based on
electro-deposition and colloidal
monolayers ................................ 112
4.2.1.2. Au-ordered through-pore arrays based on
electro-deposition and colloidal
monolayers ................................ 120
4.2.1.3. SnO2 mono- and multi-layered
nanostructured porous films based on
solution-dipping templates ................ 128
4.2.1.4. Fe2O3-ordered pore arrays based on
solution-dipping templates and colloidal
monolayer ................................. 133
4.2.1.5. In2O3-ordered pore arrays based on
solution-dipping templates and colloidal
monolayers ................................ 141
4.2.2. Two-dimensional ordered polymer hollow sphere and
convex structure arrays based on monolayer pore
films .............................................. 147
4.2.3. Au nanoparticle arrays ............................. 153
Bibliography .................................................. 159
5. Nanoarray Synthesis and Characterization based on
Alumina Templates ......................................... 165
5.1 Preparation techniques of ordered channel AAM
(anodization alumina membrane) templates .................. 167
5.1.1. Preparation of ordered channel AAM templates ....... 168
5.1.2. Structure and characterization of ordered channel
AAM templates ...................................... 170
5.1.3. Exploration of ordered channel formation
mechanism .......................................... 171
5.2 Synthesis and characterization of ordered nanoarrays ...... 174
5.2.1. Ordered nanoarrays of elements ..................... 175
5.2.1.1. Ordered nanoarrays of metal nanowires
and nanotubes (Pb, Ag, Cu, Au) ............ 175
5.2.1.2. Ordered nanoarrays of semimetal
nanowires and nanotubes ................... 192
5.2.1.3. Ordered nanoarrays of Sb nanowires and
nanotubes ................................. 206
5.2.1.4. Ordered nanoarrays of semiconductor
nanowires and nanotubes ................... 210
5.2.1.5. Ordered nanoarrays of carbon nanotubes .... 214
5.2.2. Ordered nanoarrays of binary compound nanowires .... 226
5.2.2.1. Ordered nanoarrays of alloy nanowires ..... 226
5.2.2.2. Ordered nanoarrays of oxide nanowires
and nanotubes ............................. 232
5.2.2.3. Ordered nanoarrays of sulphide,
selenide, telluride and ionide
nanowires ................................. 247
5.2.3. Ordered nanoarrays of ternary compound
nanowires .......................................... 268
5.2.3.1. Co-Ni-P alloy nanoarrays .................. 268
5.2.3.2. Ni-W-P alloy nanowire arrays .............. 271
Bibliography .................................................. 275
6. Controlled Growth of Carbon Nanotubes ..................... 287
6.1 Introduction .............................................. 289
6.2 Preparation, morphologies and structures of Small
diameter carbon nantubes (CNTs) ........................... 291
6.2.1. Multi-walled carbon nanotubes (MWNTs) .............. 292
6.2.2. Single-walled carbon nanotubes (SWNTs) ............. 295
6.2.3. Discussion and analysis ............................ 295
6.3 Very long carbon nanotubes and continuous carbon
nanotube yarns (fibers) ................................... 300
6.3.1. Very long carbon nanotubes ......................... 301
6.3.2. Spinning continuous carbon nanotube yarns
(fibers) ........................................... 304
6.4 Controlled synthesis of single-walled carbon nanotubes .... 306
6.4.1. Preparation of pure single-walled carbon
nanotubes .......................................... 307
6.4.2. Direct synthesis of a macroscale single-walled
carbon nanotubes non-woven material ................ 312
6.4.3. Synthesis of random networks of single-walled
carbon nanotubes ................................... 316
6.5 Synthesis of double-walled carbon nanotubes (DWNTs) ....... 319
Bibliography .................................................. 323
7. Synthesis of Inorganic Non-carbon Nanotubes ............... 327
7.1 Introduction .............................................. 329
7.2 Synthesis of inorganic nanotubes .......................... 330
7.2.1. Inorganic nanotubes based on two-dimensional
structures ......................................... 331
7.2.1.1. Inorganic nanotubes based on graphite
(carbon nanotubes) ........................ 331
7.2.1.2. Inorganic nanotubes based on transition
metal chalcogenides and halides ........... 331
7.2.1.3. Inorganic nanotubes based on boron
nitride and the derivatives ............... 339
7.2.1.4. Inorganic nanotubes based on rare earth
and transition metal oxides and their
derivatives ............................... 340
7.2.2. Inorganic nanotubes based on quasi-two-
dimensional structures ............................. 342
7.2.3. Inorganic nanotubes based on three-dimensional
structures ......................................... 350
7.2.4. Formation mechanisms of inorganic nanotubes ........ 355
7.3 Concluding remarks ........................................ 360
Bibliography .................................................. 360
8. Novel Properties of Nanomaterials ......................... 367
8.1 Introduction .............................................. 369
8.2 Polarization characteristics of metal nanowire
microarrays embedded in anodic alumina membrane
templates ................................................. 369
8.2.1. Introduction ....................................... 369
8.2.2. Optical measurement ................................ 370
8.2.3. Polarization characteristics ....................... 371
8.2.3.1. Cu/AAM .................................... 371
8.2.3.2. Ag/AAM .................................... 374
8.2.3.3. Pb/AAM .................................... 375
8.2.4. Theoretical calculation ............................ 376
8.2.4.1. Theory model .............................. 377
8.2.4.2. Numerical simulation ...................... 380
8.2.5. Conclusion ......................................... 388
8.3 Electronic and magnetic properties of Bi-based nanowire
arrays .................................................... 388
8.3.1. Bi nanowire arrays ................................. 389
8.3.2. Bi-Bi homogeneous nanowire junction ................ 391
8.3.3. Y-segment Bi nanowire array ........................ 392
8.3.4. Bi-Sb segment nanowire junction .................... 394
8.4 Thermal expansion properties of nanowire arrays ........... 395
8.4.1. Agl nanowire arrays ................................ 395
8.4.2. Bi nanowire arrays ................................. 398
8.4.3. Cu nanowire arrays ................................. 401
Bibliography .................................................. 403
9. Applications .............................................. 407
9.1 Introduction .............................................. 409
9.2 Sensors ................................................... 409
9.2.1. SnO2 gas sensors ................................... 409
9.2.2. Biosensors ......................................... 420
9.2.2.1. Nanodevices for electrical detection of
single viruses ............................ 420
9.2.2.2. Nanoelectromeehanical devices for
detection of viruses ...................... 426
9.2.2.3. Biological magnetic sensors ............... 431
9.2.2.4. Biotin-modified Si nanowire nanosensors
for detection of protein binding .......... 435
9.2.2.5. Bio-conjugated nanoparticles for rapid
detection of single bacterial cell ........ 438
9.2.2.6. Near-infrared optical sensors based on
single-walled carbon nanotubes ............ 440
9.2.3. Chemical sensors ................................... 442
9.3 Field emission of carbon nanotubes and its application .... 445
9.4 Light polarization ........................................ 448
9.5 Light-bulb filaments made of carbon nanotube yarns ........ 453
9.6 Electronic and optoelectronic nanoscale devices ........... 453
Bibliography .................................................. 457
Index ......................................................... 463
|