Preface IX
1 Introduction .......................................... 1
1.1 What is a Plasma? ..................................... 3
1.2 Relevant Issues of Nanoscience and Nanotechnology .... 12
1.3 Plasma-Assisted Synthesis of Nanomaterials ........... 19
1.4 How to Choose the Right Plasma for Applications in
Nanotechnology? .................................... 31
1.5 Structure of the Monograph and Advice to the
Reader ............................................. 37
2. Generation of Highly Uniform, High-Density
Inductively Coupled Plasma ......................... 41
2.1 Low-Frequency ICP with a Flat External Spiral Coil:
Plasma Source and Diagnostic Equipment ............. 42
2.1.1 Plasma Source ........................................ 44
2.1.2 Diagnostics of Inductively Coupled Plasmas ........... 45
2.2 Discharge Operation Regimes, Plasma Parameters, and
Optical Emission Spectra ........................... 50
2.2.1 Electromagnetic Properties and Mode Transitions ...... 50
2.2.2 Plasma Parameters .................................... 52
2.2.3 Discharge Hysteresis ................................. 54
2.3 Electromagnetic Field Distribution and Nonlinear
Effects ............................................ 56
2.4 Optical Emission Spectroscopy of Complex Gas
Mixtures ........................................... 62
2.4.1 Optical Emission Spectra and Hysteresis .............. 63
2.4.2 E → H Transition Thresholds .......................... 66
2.5 Modeling of Low-Frequency Inductively Coupled
Plasmas ............................................ 72
2.5.1 Basic Assumptions .................................... 73
2.5.2 Electromagnetic Fields ............................... 73
2.5.3 Particle and Power Balance ........................... 74
2.5.4 Numerical Results .................................... 76
2.6 Concluding Remarks ................................... 81
3 Plasma Sources: Meeting the Demands of
Nanotechnology ..................................... 85
3.1 Inductively Coupled Plasma Source with Internal
Oscillating Currents: Concept and Experimental
Verification ....................................... 86
3.1.1 Configuration of the IOCPS ........................... 87
3.1.2 RF Power Deposition .................................. 89
3.1.3 Plasma Parameters .................................... 94
3.2 IOCPS: Stability and Mode Transitions ................ 98
3.2.1 Optical Emission ..................................... 99
3.2.2 Self-Transitions of the IOCPS Discharge Modes ....... 101
3.3 ICP-Assisted DC Magnetron Sputtering Device ......... 106
3.3.1 Enhancement of DC Magnetron Sputtering by an
Inductively Coupled Plasma Source ................. 109
3.3.2 Mode Transitions in ICP-Assisted Magnetron
Sputtering Device .................................. 111
3.4 Integrated Plasma-Aided Nanofabrication Facility .... 115
3.5 Concluding Remarks .................................. 119
4 Carbon-Based Nanostructures ......................... 121
4.1 Growth of Carbon Nanostructures on Unheated
Substrates ........................................ 123
4.1.1 Process Details ..................................... 124
4.1.2 Synthesis, Characterization, and Growth Kinetics .... 224
4.2 Temperature-Controlled Regime ....................... 130
4.3 Single-Crystalline Carbon Nanotips: Experiment ...... 137
4.4 Single-Crystalline Carbon Nanotips: ab initio
Simulations ....................................... 141
4.4.1 Theoretical Background and Numerical Code ........... 142
4.4.2 Geometrical Stability of Carbon Nanotip
Structures ........................................ 143
4.4.3 Electronic Properties of Carbon Nanotips ............ 146
4.5 Plasma-Assisted Doping and Functionalization of
Carbon nanostructures ............................. 149
4.5.1 Doping of Carbon-Based Nanostructures: Density
Functional Theory Considerations .................. 149
4.5.2 Postprocessing of Carbon-Based Nanostructures:
Experiments ....................................... 152
4.6 Synthesis of Carbon Nanowall-Like Structures ........ 156
5 Quantum Confinement Structures ...................... 159
5.1 Plasma-Assisted Fabrication of AlN Quantum Dots ..... 161
5.2 Nanofabrication of AlxIn1-xN Quantum Dots:
Plasma-Aided Bandgap Control ...................... 167
5.3 Plasma-Aided Nanofabrication of SiC Quantum Dot
Arrays ............................................ 172
5.3.1 SiC Properties and Applications ..................... 172
5.3.2 SiC Growth Modes: With and Without AlN Interlayer ... 173
5.3.3 Quest for Crystallinity and Nanopattern
Uniformity ........................................ 181
5.4 Plasma-Aided Fabrication of Very Large-Aspect
Ratio Si-Based Nanowires .......................... 188
5.5 Quasi-Two-Dimensional Semiconductor Superlattices
Synthesized by Plasma-Assisted Sputtering
Deposition ........................................ 191
5.6 Other Low-Dimensional Quantum Confinement
Structures and Concluding Remarks ................. 199
6 Hydroxyapatite Bioceramics .......................... 209
6.1 Basic Requirements for the Synthesis of HA
Bioceramics ....................................... 209
6.2 Plasma-Assisted RF Magnetron Sputtering Deposition
Approach .......................................... 212
6.2.1 Comparative Advantage ............................... 212
6.2.2 Experimental Details ................................ 223
6.3 Synthesis and Growth Kinetics ....................... 217
6.3.1 Optimization of the Plasma-Aided Coating
Fabrication Process ............................... 217
6.3.2 Film Growth Kinetics ................................ 222
6.4 Mechanical Testing of HA Films ...................... 226
6.5 In vitro Assessment of Performance of
Biocompatible HA Coatings ......................... 229
6.5.1 Simulated Body Fluid assessment ..................... 230
6.5.2 Cell Culture Assessment ............................. 233
6.6 Concluding Remarks .................................. 236
7 Other Examples of Plasma-Aided Nanofabrication ...... 237
7.1 Plasma-Assisted Er Doping of SiC Nanoparticle
Films: An Efficient Way to Control
Photoluminescence Properties ...................... 238
7.2 Polymorphous (poly)Nanocrystalline Ti-O-Si-N Films
Synthesized by Reactive Plasma-Assisted
Sputtering ........................................ 241
7.3 Fabrication of Nanostructured A1CN Films:
A Building Unit Approach for Tailoring Film
Composition ....................................... 244
7.4 Plasma-Assisted Growth of Highly Oriented
Nanocrystalline AlN ............................... 251
7.5 Plasma-Assisted Synthesis of Nanocrystalline
Vanadium. Oxide Films ............................. 258
7.6 Plasma-Treated Nano/Microporous Materials ........... 264
8 Further Examples, Conclusions, and Outlook .......... 269
8.1 Further Examples of Plasma-Aided Nanofabrication .... 270
8.2 On Benefits and Problems of Using Plasma
Nanotools ......................................... 276
8.3 Outlook for the Future and Concluding Remarks ....... 280
References ................................................. 283
Index ...................................................... 297
|