Foreword ...................................................... xix
Preface ....................................................... xxi
Author ....................................................... xxix
1 Highlights and Chronological Developmental History of
MEMS Devices Involving Nanotechnology ...................... 1
1.1 Introduction ............................................... 1
1.2 What Is MEMS? .............................................. 3
1.2.1 Frequently Used Terms in Nanotechnology .............. 3
1.2.2 2005 MEMS Industry Overview and Sales Projections
for MEMS Devices ..................................... 4
1.3 Potential Applications of MEMS Devices in Commercial and
Space Systems .............................................. 4
1.3.1 MEMS for Wireless, Base Stations, Satellites, and
Nanosatellites ....................................... 5
1.3.1.1 RF-MEMS Amplifier-Switched Filter Bank
Capabilities ................................. 6
1.3.1.2 Passive RF-MEMS Components ................... 7
1.3.2 RF-MEMS Technology for Base Station Requirements ..... 9
1.4 MEMS Technology for Military Systems Applications ......... 11
1.4.1 Material Requirements for Fabrication of MEMS
Devices ............................................. 13
1.4.2 Types of Nanostructures and Their Properties ........ 14
1.4.2.1 Surface Plasmon Resonance ................... 16
1.4.2.2 Ceramics for MEMS Sensors ................... 17
1.4.3 Fabrication of Critical Elements of a MEMS Device ... 17
1.4.4 MEMS Technology for Electronic Circuits and
Detectors for Military Applications ................. 19
1.4.4.1 Passive MEMS Devices for Commercial,
Military, and Space Applications ............ 19
1.4.5 Nanotechnology for Armors to Provide Protection to
Soldiers ............................................ 20
1.4.6 Nanotechnoiogy-Based Biometric Structures to
Monitor Soldier Health .............................. 20
1.4.7 Nanomaterials for External Support Muscles and
Artificial Muscles for Injured Soldiers on
the Battlefield ..................................... 21
1.4.8 Robotic Arms for Battlefield Applications ........... 21
1.4.9 Portable Radar Using MEMS/Nanotechnology for
Military Applications ............................... 22
1.5 MEMS for Commercial, Industrial, Scientific, and
Biomedical System Applications ............................ 23
1.5.1 Nanotubes and Nanotuhe Arrays for Various
Applications ........................................ 23
1.5.2 MEMS-Based Video Projection System .................. 24
1.5.3 Nanotechnology for Photovoltaic Solar Cells and
3-D Lithium Ion Microbatteries for MEMS Devices ..... 25
1.6 MEMS Technology for Hard-Disk Drives ...................... 26
1.6.1 MEMS Devices for Thermographic Nondestructive
Testing ............................................. 27
1.7 MEMS Devices for Uncooled Thermal Imaging Arrays and
Cooled Focal Planar Arrays for Various Applications ....... 28
1.8 Applications of Nanotechnology in IR and Electro-Optical
Sensors for Biometric and Security Applications ........... 29
1.8.1 Nanotechnology-Based Laser Scanning Systems ......... 30
1.8.2 MEMS-Based Sensors for Detection of Chemical and
Biological Threats .................................. 31
1.8.3 Potential Applications of Nanophotonic Sensors and
Devices ............................................. 31
1.8.4 MEMS Technology for Photonic Signal Processing and
Optical Communications .............................. 32
1.9 MEMS Technology for Medical Applications .................. 33
1.10 MEMS Technology for Satellite Communications and Space
Systems Applications ...................................... 34
1.11 MEMS Devices for Auto Industry Applications ............... 36
1.12 MEMS Technology for Aerospace System Applications ......... 37
1.13 Summary ................................................... 38
References ..................................................... 39
2 Potential Actuation Mechanisms, Their Performance
Capabilities, and Applications ............................. 41
2.1 Introduction ............................................... 41
2.2 Classification of Actuation Mechanisms ..................... 43
2.3 Structural Requirements and Performance Capabilities of
Electrostatic Actuation Mechanism .......................... 43
2.3.1 Electrostatic Actuation Mechanism .................... 43
2.3.1.1 Cantilever Beam Design Requirements .......... 45
2.3.2 Electrostatic Force Computation ...................... 48
2.3.3 Pull-In and Pull-Out Voltage Requirements ............ 54
2.3.3.1 Pull-In Voltage .............................. 57
2.3.3.2 Pull-Out Voltage ............................. 62
2.3.3.3 Electrostatic Microactuator Configurations
for Generating Higher Force and Energy
Density Capabilities ......................... 65
2.4 Piezoelectric Actuation Mechanism .......................... 66
2.4.1 Structural Material Requirements for Cantilever
Beams ................................................ 68
2.4.2 Threshold Voltage .................................... 69
2.4.3 Tip Deflection of the Cantilever Beam ................ 71
2.4.4 Bending Moment of the Cantilever Beam ................ 71
2.4.5 Contact Force Requirements ........................... 75
2.5 Electrothermal Actuation Mechanism ......................... 78
2.6 Electromagnetic Actuation Mechanism ........................ 83
2.6.1 Pull-in and Pull-Out Magnetomotive Forces ............ 84
2.6.2 Actuation Force due to Induced Magnetic Force ........ 85
2.6.2.1 Parametric Trade-Off Computations ............ 87
2.7 Electrodynamic Actuation Mechanism ......................... 88
2.8 Electrochemical Actuation Mechanism ........................ 91
2.8.1 Classification and Major Benefits of CNT ............. 92
2.8.2 MWCNT Arrays and Electrochemical Actuator
Performance .......................................... 92
2.8.3 Fabrication and Material Requirements for
the Actuator ......................................... 92
2.9 Summary .................................................... 94
References ..................................................... 95
3 Latest and Unique Methods for Actuation .................... 97
3.1 Introduction ............................................... 97
3.2 Electrostatic Rotary Microactuator with Improved Shaped
Design ..................................................... 98
3.2.1 Performance Limitation of Conventional
Parallel-Plate Electrodes ............................ 99
3.2.2 ESRM with Tilted Configuration ...................... 100
3.2.3 Requirements for Optimum Shaped Electrodes .......... 100
3.2.4 Force Generation Computations of Rotary Actuator
with Conventional and Tilted Configurations ......... 101
3.2.4.1 Actuation Force Computation for
Conventional Configuration .................. 102
3.2.4.2 Force Generation Computation for Tilted
Configuration ............................... 102
3.2.5 Torque-Generating Capability of the Rotary
Actuator with Tilted Configuration .................. 109
3.2.6 Optimum Curve Shape of the Electrodes ............... 110
3.2.6.1 Potential Electrode Shapes .................. 110
3.2.6.2 Normalized Torque as a Function of
Normalized Angular Displacement ............. 111
3.2.6.3 Parametric Requirements for Optimum Rotary
Microactuator ............................... 115
3.3 Unique Microactuator Design for HHD Applications .......... 118
3.3.1 Introduction ........................................ 118
3.3.2 Benefits and Design Aspects of a Dual-Stage
Servomechanism (or MEMS Piggyback Actuator) ......... 119
3.3.2.1 Architecture of a Third-Generation
Microactuator ............................... 120
3.3.2.2 Performance Capabilities of the MEMS
Piggyback Microactuator ..................... 120
3.3.3 Force Generation Capability, Displacement Limit,
and Mechanical Resonance Frequency Range ............ 122
3.3.3.1 Electrostatic Force Calculation ............. 123
3.3.3.2 Mechanical Resonance Frequency
Calculation ................................. 123
3.3.3.3 Electrode Mass Computation .................. 125
3.3.3.4 Displacement (x) as a Function of Gap Size
(g) and Number of Electrodes (N) ............ 126
3.4 Capabilities of Vertical Comb Array Microactuator ......... 127
3.4.1 Structural Requirements and Critical Design
Aspects of VGA Actuator ............................. 129
3.4.2 VCAM Performance Comparison with Other Actuators .... 130
3.4.3 Potential Comb Finger Shapes ........................ 130
3.5 Capabilities of Bent-Beam Electrothermal Actuators ........ 133
3.5.1 Performance Capabilities and Design Configuration
of Bent-Beam Electrothermal Actuators ............... 133
3.5.2 Brief Description of the BBET Structure ............. 134
3.5.3 Input Power Requirements for BBET Actuators ......... 139
3.6 Summary ................................................... 140
References .................................................... 140
4 Packaging, Processing, and Material Requirements for
MEMS Devices .............................................. 141
4.1 Introduction .............................................. 141
4.2 Packaging and Fabrication Materials ....................... 142
4.2.1 Packaging Material Requirements and Packaging
Processes ........................................... 144
4.2.1.1 Sealing Methods ............................. 145
4.2.2 Effects of Temperature on Packaging ................. 146
4.2.3 Effect of Pressure on Packaging and Device
Function ............................................ 146
4.2.4 Fabrication Aspects for MEMS Devices Incorporating
Nanotechnology ...................................... 147
4.2.4.1 Thin-Film Capping Requirements for MEMS
Devices ..................................... 149
4.2.4.2 Chip Capping and Bonding Requirements ....... 149
4.2.4.3 Transition and Feedthrough Requirements
for MEMS Devices ............................ 150
4.2.4.4 Material Requirements for Piezoelectric
Actuators ................................... 151
4.2.4.5 Material Requirements for Structural
Support, Electrodes, and Contact Pads ....... 153
4.2.4.6 Requirements for Electrodeposition and
Electroplating Materials .................... 153
4.3 Impact of Environments on MEMS Performance ................ 154
4.3.1 Impact of Temperature Variations on Coefficient of
Thermal Expansion ................................... 155
4.3.2 Effects of Temperature on Thermal Conductivity of
Materials Used in MEMS .............................. 156
4.3.3 Special Alloys Best Suited for MEMS Applications .... 159
4.3.3.1 Benefits of CE-Alloys in RF/Microwave MEMS
Packaging ................................... 160
4.3.3.2 Benefits of CE-Alloys for Thermal Backing
Plates ...................................... 160
4.3.3.3 Benefits of CE-Alloys in Integrated
Circuit Assemblies .......................... 161
4.3.4 Bulk Materials Best Suited for Mechanical Design
of MEMS Devices ..................................... 161
4.4 Material Requirements for Electrostatic Actuator
Components ................................................ 162
4.4.1 Material Properties for MEMS Membranes .............. 163
4.4.2 Sacrificial Material Requirements for MEMS
Devices ............................................. 163
4.4.3 Three-Dimensional Freely Movable Mechanical
Structure Requirements .............................. 164
4.5 Substrate Materials Best Suited for Various MEMS
Devices ................................................... 164
4.5.1 Soft Dielectric Substrates .......................... 165
4.5.2 Hard Dielectric Substrates .......................... 165
4.5.3 Electrical Properties of Soft and Hard Substrates ... 167
4.5.4 Glass-Ceramic Hybrid Substrate for MEMS ............. 170
4.5.5 Para-Electronic Ceramic Substrates for MEMS
Applications ........................................ 170
4.5.6 Insulation and Passivation Layer Materials .......... 171
4.5.7 Material Requirements for MEMS in Aerospace
Systems ............................................. 172
4.6 Summary ................................................... 173
References .................................................... 174
5 RF-MEMS Switches Operating at Microwave and mm-Wave
Frequencies .............................................. 175
5.1 Introduction ............................................. 175
5.2 Operating Principle and Critical Performance Parameters
of MEMS Devices .......................................... 177
5.2.1 Critical Performance Parameters Affected by
Environments ....................................... 177
5.2.2 Two Distinct Configurations of RF-MEMS Switches
and Design Aspects ................................. 178
5.3 Performance Capabilities and Design Aspects of RF-MEMS
Shunt Switches ........................................... 180
5.3.1 Electrostatic Actuation Requirements for
the Shunt Switch Using Membranes ................... 181
5.3.1.1 Sample Calculations for Spring Constant
and Pull-in Voltage ........................ 183
5.3.2 Computer Modeling Parameters for MEMS Shunt
Switch ............................................. 183
5.3.2.1 Computation of Upstate and Downstate
Capacitances ............................... 185
5.3.2.2 Current Distribution and Series
Resistance of the MEMS Bridge Structure .... 186
5.3.2.3 Estimates of Switch Inductance and
Capacitance Parameters ..................... 187
5.3.2.4 Insertion Loss in a MEMS Switch ............ 188
5.3.2.5 Estimation of Series Resistance of
the Bridge and Impact of Switch
Inductance on the Isolation ................ 189
5.3.2.6 Typical Upstate and Downstate Insertion
Losses in a MEMS Shunt Switch .............. 191
5.4 MEMS Shunt Switch Configuration for High Isolation ....... 192
5.4.1 Tuned Two-Bridge Design and Its Performance
Capabilities ....................................... 193
5.4.2 Design Aspects and Performance Capabilities of
Four-Bridge Cross Switch ........................... 194
5.4.2.1 High Isolation with Inductively Tuned
MEMS Switches .............................. 196
5.4.3 MEMS Shunt Switches for Higher mm-Wave
Frequencies ........................................ 197
5.4.3.1 W-Band MEMS Shunt-Capacitive Switch ........ 197
5.4.3.2 Switching Speed of MEMS Shunt Switches ..... 199
5.5 MEMS Switches Using Metallic Membranes ................... 201
5.5.1 Introduction ....................................... 201
5.5.2 Operating Principle and Design Aspects of
Capacitive Membrane Switches ....................... 201
5.5.3 RF Performance Parameters of Membrane Shunt
Switch ............................................. 209
5.6 RF-MEMS Switches with Low-Actuation Voltage .............. 210
5.6.1 Introduction ....................................... 210
5.6.2 Fabrication Process Steps and Critical Elements
of the Switch ...................................... 211
5.6.3 Reliability Problems and Failure Mechanisms in
the Shunt MEMS Switches ........................... 211
5.6.4 RF Performance Capabilities ........................ 213
5.7 RF-MEMS Series Switches .................................. 213
5.7.1 Introduction ....................................... 213
5.7.2 Description and Design Aspects of the MEMS Series
Switch ............................................. 213
5.7.3 Fabrication Process Steps and Switch Operational
Requirements ....................................... 215
5.7.4 RF Design Aspects .................................. 217
5.7.5 RF Performance Parameters of the Switch ............ 217
5.8 Effects of Packaging Environments on the Functionality
and Reliability of the MEMS Switches ..................... 218
5.8.1 Introduction ....................................... 218
5.8.2 Impact of Temperature on the Functionality and
Reliability ........................................ 218
5.8.3 Impact of Pressure on Switch Reliability and RF
Performance ........................................ 219
5.8.4 Effects of Zero-Level Packaging on MEMS Switch
Performance ........................................ 220
5.9 Packaging Material Requirements for MEMS Switches ........ 220
5.9.1 Properties and Applications of CE-Alloys for
RF-MEMS Devices and Sensors ........................ 221
5.10 Summary .................................................. 222
References .................................................... 223
6 RF/Microwave MEMS Phase Shifter .......................... 225
6.1 Introduction ............................................. 225
6.2 Properties and Parameters of CPW Transmission Lines ...... 226
6.2.1 Computations of CPW Line Parameters ............... 227
6.3 Distributed MEMS Transmission-Line Phase Shifters ........ 232
6.3.1 Introduction ...................................... 232
6.3.2 Computations of DMTL Parameters ................... 233
6.3.2.1 Bragg Frequency Computations .............. 234
6.3.2.2 Computations of Bridge Impedance (ZB)
and Phase Velocity (Vp) ................... 236
6.3.2.3 Insertion Loss in the DMTL Section ........ 238
6.4 Design Aspects and DMTL Parameter Requirements for TTD
Phase Shifters Operating at mm-Wave Frequencies .......... 239
6.4.1 Computations of Unloaded Line Impedance (Zul),
Line Inductance, and Capacitance per Unit Length
of the Transmission Line .......................... 240
6.4.2 Digital MEMS Distributed X-Band Phase Shifter ..... 241
6.4.3 Design Procedure for mm-Wave DMTL Phase
Shifters .......................................... 242
6.4.4 Expression for Phase Shift ........................ 244
6.4.5 Optimized Design Parameters for a W-Band DMTL
Phase Shifter ..................................... 245
6.5 Two-Bit MEMS DMTL Phase Shifter Designs .................. 247
6.5.1 Design Parameters and Performance Capabilities
of 2-Bit, X-Band Phase Shifter .................... 248
6.5.2 Insertion Loss in a DMTL Phase Shifter ............ 249
6.5.3 Digital Version of the DMTL Phase Shifter with
360° Phase Capability ............................. 250
6.5.3.1 Design Parameter Requirements for
Digital, 360° Phase Shifter ............... 250
6.5.3.2 Insertion Loss Contributed by MIM
Capacitors and Its Effect on CPW Line
Loss ...................................... 252
6.5.3.3 Phase Noise Contribution from DMTL Phase
Shifters .................................. 253
6.6 Multi-Bit Digital Phase Shifter Operating at K and Ka
Frequencies .............................................. 254
6.6.1 Introduction ...................................... 254
6.6.2 Design Aspects and Critical Elements of the MDDM
Phase Shifter ..................................... 255
6.7 Ultrawide Band Four-Bit True-Time-Delay MEMS Phase
Shifter Operating over dc-40 GHz ......................... 257
6.7.1 Introduction ...................................... 257
6.7.2 Design Requirements and Parameters to Meet
Specific Performance for a Wideband 4-Bit, TTD
Phase Shifter ..................................... 257
6.7.3 Performance Parameter of the Device ............... 258
6.8 Two-Bit, V-Band Reflection-Type MEMS Phase Shifter ....... 259
6.8.1 Introduction ...................................... 259
6.8.2 Design Aspects and Performance Capabilities ....... 260
6.9 Three-Bit, Ultralow Loss Distributed Phase Shifter
Operating over K-Band Frequencies ........................ 264
6.9.1 Introduction ...................................... 264
6.9.2 Design Aspects, Operating Principle, and
Description of Critical Elements .................. 264
6.10 Three-Bit, V-Band, Reflection-Type Distributed MEMS
Phase Shifter ............................................ 266
6.10.1 Design Aspects and Critical Performance
Parameters ........................................ 266
6.10.2 RF Performance of the 3 dB CPW Coupler and
the 3-Bit, V-Band Phase Shifter ................... 267
6.10.3 Maximum Phase Shift Available from a Multibridge
DMTL Phase Shifter ................................ 267
6.11 Summary .................................................. 269
References .................................................... 270
7 Applications of Micropumps and Microfluidics .............. 271
7.1 Introduction .............................................. 271
7.2 Potential Applications of Micropumps ...................... 272
7.3 Design Aspects of Fixed-Valve Micropumps .................. 272
7.3.1 Models Most Suited for Performance Optimization ..... 273
7.3.2 Reliable Modeling Approach for MPs with Fixed
Valves .............................................. 273
7.3.2.1 Electrical and Mechanical Parameters for
Low-Order Model ............................. 274
7.3.2.2 Mathematical Expression for Critical Pump
Parameters .................................. 275
7.3.2.3 Chamber Parameters .......................... 276
7.3.2.4 Fluidic Valve Parameters and Their Typical
Values ...................................... 277
7.3.2.5 Description of Micropumps with
Straight-Channel Configurations ............. 279
7.3.2.6 Impact of Viscosity and Membrane
Parameters on Valve Performance ............. 281
7.4 Dynamic Modeling for Piezoelectric Valve-Free
Micropumps ................................................ 282
7.4.1 Introduction ........................................ 282
7.4.2 Modeling for the Piezoelectric Valve-Free Pump ...... 282
7.4.3 Natural Frequency of the Micropump System ........... 285
7.4.4 Pump Performance in Terms of Critical Parameters .... 287
7.5 Design Aspects and Performance Capabilities of
an Electrohydrodynamic Ion-Drag Micropump ................. 289
7.5.1 Introduction ........................................ 289
7.5.2 Design Concepts and Critical Parameters of an EHD
Pump ................................................ 290
7.5.3 Benefits of EHD Ion-Drag Pumps ...................... 292
7.5.4 Critical Design Aspects of Ion-Drag Pump and
Electrode Ceometries ................................ 294
7.6 Capabilities of a Ferrofluidic Magnetic Micropump ......... 295
7.6.1 Introduction ........................................ 295
7.6.2 Design Aspects and Critical Performance
Parameters .......................................... 295
7.6.3 Operational Requirements for Optimum Pump
Performance ......................................... 298
7.7 Summary ................................................... 300
References .................................................... 301
8 Miscellaneous MEMS/Nanotechnology Devices and Sensors
for Commercial and Military Applications ................. 303
8.1 Introduction ............................................. 303
8.2 MEMS Varactors or Tunable Capacitors ..................... 304
8.2.1 Benefits and Shortcomings of MEMS Varactors ....... 307
8.2.2 MEMS Varactor Design Aspects and Fabrication
Requirements ...................................... 307
8.2.3 Effects of Nonlinearity Generated by MEMS
Capacitors ........................................ 308
8.3 Micromechanical Resonators ............................... 311
8.3.1 Introduction ...................................... 311
8.3.2 Types of Micro-Resonators and Their Potential
Applications ...................................... 311
8.3.3 Free-Free Beam High-Q Micro-Resonators ............ 315
8.3.3.1 Structural Design Aspects and
Requirements of FFB Micro-Resonators ...... 315
8.3.3.2 Operational Requirements and Parameters
FFB Micro-Resonator ....................... 318
8.3.4 Folded-Beam Comb-Transducer Micro-Resonator ....... 320
8.3.5 Clamped-Clamped Beam Micro-Resonator .............. 321
8.3.5.1 Effects of Environmental Factors on
Micro-Resonator Performance ............... 322
8.3.5.2 Performance Summary of Various
Micromechanical Resonators ................ 323
8.4 Micromechanical Filters .................................. 324
8.4.1 Micromechanical Filter Design Aspects ............. 324
8.4.2 Critical Elements and Performance Parameters of
Micromechanical Filters ........................... 326
8.4.3 Performance Summary of a Two-Resonator
High-Frequency Filter ............................. 327
8.5 Transceivers ............................................. 329
8.5.1 Introduction ...................................... 329
8.5.2 Transceiver Performance Improvement from
Integration of Micromechanical Resonator
Technology ........................................ 329
8.6 Oscillator Using Micromechanical Resonator Technology .... 330
8.6.1 Design Concepts and Performance Parameters of
the 16.5 kHz Oscillator ........................... 330
8.7 V-Band MEMS-Based Tunable Band-Pass Filters .............. 331
8.7.1 Introduction ...................................... 331
8.7.2 Design Parameters and Fabrications Techniques
for a V-Band MEMS-Filter .......................... 332
8.7.3 Performance Parameters of a V-Band, Two-Stage
MEMS Tunable Filter ............................... 333
8.8 MEMS-Based Strain Sensors ................................ 333
8.8.1 Introduction ...................................... 333
8.8.2 Design Aspects and Requirements for Strain
Sensor Installation and Calibration ............... 333
8.8.3 Gauge Factor Computation .......................... 336
8.9 MEMS Interferometric Accelerometers ...................... 338
8.9.1 Introduction ...................................... 338
8.9.2 Design Aspects and Requirements for
an Interferometric Accelerometer .................. 338
8.10 MEMS-Based Micro-Heat Pipes .............................. 341
8.10.1 Introduction ...................................... 341
8.10.2 Design Aspects and Critical Parameters of
Micro-Heat Pipes .................................. 341
8.11 MEMS-Based Thin-Film Microbatteries ...................... 344
8.11.1 Introduction ...................................... 344
8.11.2 Critical Design Aspects and Requirements for
the 3-D, Thin-Film Microbatteries ................. 344
8.11.3 Projected Performance Parameters of a 3-D,
Thin-Film Microbattery ............................ 349
8.11.4 Unique Features and Potential Applications of
Microbatteries .................................... 350
8.12 Summary .................................................. 350
References .................................................... 351
9 Materials for MEMS and Nanotechnology-Based Sensors and
Devices .................................................. 353
9.1 Introduction ............................................. 353
9.2 Photonic Crystals ........................................ 354
9.2.1 Photonic Bandgap Fiber ............................. 354
9.2.2 Core Material Requirements for PCF ................. 355
9.2.3 Unique Properties of PCFs and Their Potential
Applications ....................................... 356
9.3 Nanotechnology-Based Materials and Applications .......... 357
9.3.1 Nanocrystals ....................................... 358
9.3.2 Photonic Nanocrystals .............................. 358
9.3.3 Nanowires and Rods and Their Applications .......... 359
9.3.3.1 Zinc Oxide Nanowires ....................... 359
9.3.3.2 Silicon Nanowires .......................... 359
9.3.3.3 Zinc Selenium Nanowires .................... 360
9.3.3.4 Zinc Phosphide Nanowires ................... 361
9.3.3.5 Cadmium Sulfide Nanowires .................. 361
9.3.3.6 Iron-Gallium Nanowires ..................... 362
9.4 Nanoparticles ............................................ 362
9.5 Quantum Dots ............................................. 363
9.5.1 Applications of Quantum Dots ....................... 364
9.5.2 Unique Security Aspects of Quantum Dots ............ 364
9.5.3 Lead Sulfide Quantum Dots with Nonlinear
Properties ......................................... 365
9.6 Nanobubbles .............................................. 365
9.6.1 Applications of Nanobubbles ........................ 366
9.7 MEMS Deformable Micro-Mirrors ............................ 366
9.7.1 Applications of MEMS Deformable Mirrors ............ 367
9.8 Carbon Nanombes and CNT Arrays ........................... 368
9.8.1 Potential Applications of CNT Arrays ............... 368
9.8.1.1 Nanostructures/Nanocomposites Using CNT
Arrays ..................................... 368
9.8.1.2 CNTs as Field Emitters or Electron
Sources .................................... 370
9.8.1.3 CNT Technology for Biosensor Chemical and
Environmental Applications ................. 370
9.8.1.4 Nanotubc Arrays for Electrochemical
Actuators .................................. 371
9.8.1.5 Nanotube Probes and Dispensing Devices ..... 372
9.9 Nanotechnology- and MEMS-Based Sensors and Devices for
Specific Applications .................................... 372
9.9.1 Acoustic Sensors Using Nanotechnology for
Underwater Detection Applications .................. 373
9.9.2 MEMS Technology for mm-Wave Microstrip Patch
Antennas ........................................... 373
9.9.3 Carbon Nanotube-Based Transistors and Solar
Cells .............................................. 374
9.9.4 Nanotechnology-Based Sensors for Weapon Health
and Battlefield Environmental Monitoring
Applications ....................................... 374
9.9.4.1 Nanotechnology-Based Sensors to Monitor
Weapon Health .............................. 374
9.9.4.2 Nanotechnology-Based Sensors to Monitor
Battlefield Environmental Conditions ....... 376
9.9.5 MEMS-Based Gyros and Applications .................. 376
9.9.6 MEMS-Based Accelerometers and Applications ......... 379
9.9.7 Material Requirements and Properties for MEMS-
and NT-Based Sensors and Devices ................... 379
9.9.7.1 Introduction ............................... 379
9.9.7.2 Material Requirements for Fabrication of
MEMS Sensors and Devices ................... 380
9.9.7.3 Properties of Materials Required for
Mechanical Design of MEMS Devices .......... 380
9.9.7.4 Properties of Materials Required for
Thermal Design of MEMS Devices ............. 381
9.10 Summary .................................................. 382
References .................................................... 383
Index ......................................................... 385
|