1 Amphiboles: Crystal Chemistry
Frank C. Hawthorne, Roberta Oberti
INTRODUCTION .................................................... 1
CHEMICAL FORMULA ................................................ 1
SOME ASPECTS OF CHEMICAL ANALYSIS ............................... 1
Chemical composition ........................................ 1
Summary ..................................................... 6
CALCULATION OF THE CHEMICAL FORMULA ............................. 7
24 (O, OH, F, CI) ........................................... 7
23 (O) ...................................................... 8
13 cations .................................................. 8
15 cations .................................................. 8
16 cations .................................................. 8
Summary ..................................................... 8
AMPHIBOLES: CRYSTAL STRUCTURE ................................... 8
Space groups ................................................ 9
Cell dimensions ............................................. 9
Site nomenclature ........................................... 9
The C2m amphibole structure ................................ 10
The P2l/m amphibole structure .............................. 12
The P2/a amphibole structure ............................... 12
The Pnma amphibole structure ............................... 12
The Pnmn amphibole structure ............................... 14
The Cl amphibole structure ................................. 17
STACKING SEQUENCES AND SPACE GROUPS ............................ 18
BOND LENGTHS AND BOND VALENCES IN [4]Al-FREE AMPHIBOLES ......... 19
THE DOUBLE-CHAIN OF TETRAHEDRA IN [4]Al AMPHIBOLES .............. 19
Variation in <T-O> bondlengths in C2/m amphiboles .......... 21
Variation in <T-O> bondlengths in Pnma amphiboles .......... 25
THE STEREOCHEMISTRY OF THE STRIP OF OCTAHEDRA .................. 27
The C2/m amphiboles: variation in mean bondlengths ......... 27
The Pnma amphiboles with B(Mg,Fe,Mn): variation in mean
bondlengths .............................................. 30
The Pnma amphiboles with BLi: variation in mean
bondlengths .............................................. 32
THE STEREOCHEMISTRY OF THE M(4) SITE ........................... 34
The calcic, sodic-calcic and sodic amphiboles .............. 35
Amphiboles with small В cations (magnesium-iron-manganese-
lithium, magnesium-sodium and lithium-sodium) ............ 36
The C2/m amphiboles: variation in <M(4)-0> bondlengths ..... 36
The Pnma amphiboles: variation in <M/4-0> bondlengths ...... 36
THE STEREOCHEMISTRY OF THE A SITE .............................. 37
The C2/m amphiboles ........................................ 37
The P2/a amphibole ......................................... 40
The Pnma amphiboles ........................................ 40
The Pnmn amphiboles ........................................ 41
THE STEREOCHEMISTRY OF THE O(3) SITE ........................... 41
The C2/m amphiboles ........................................ 41
UNIT-CELL PARAMETERS AND COMPOSITION IN C2/m AMPHIBOLES ........ 42
SUMMARY ........................................................ 46
ACKNOWLEDGMENTS ................................................ 46
REFERENCES ..................................................... 47
APPENDIX 1: CRYSTAL-STRUCTURE REFINEMENTS OF AMPHIBOLE ......... 51
2 Classification of the Amphiboles
Frank С Hawthorne, Roberta Oberti
INTRODUCTION ................................................... 55
THE CURRENT CLASSIFICATION SCHEMES ............................. 55
HAND-SPECIMEN (FIELD) CLASSIFICATION OF AMPHIBOLES ............. 55
AMPHIBOLE CLASSIFICATION BY CHEMICAL FORMULA ................... 56
Prefixes ................................................... 56
Adjectival modifiers ....................................... 57
THE CURRENT CLASSIFICATION SCHEME (LEAKE ET AL. 1997, 2003) .... 57
The magnesium-iron-manganese-lithium amphiboles ............ 58
The calcic amphiboles ...................................... 58
The sodic-calcic amphiboles ................................ 58
The sodic amphiboles ....................................... 62
The sodium-calcium-magnesium-iron-manganese-lithium
amphiboles ............................................... 62
Named amphiboles ........................................... 62
SIGNIFICANT ISSUES INVOLVED IN THE CLASSIFICATION OF
AMPHIBOLES ................................................... 62
The role of Fe, (OH) and Li ................................ 64
Root names ................................................. 66
More on root names ......................................... 66
Criteria for the recognition of distinct species ........... 67
Prefixes ................................................... 67
Synthetic amphiboles ....................................... 68
THE PRINCIPAL VARIABLES USED IN THE CLASSIFICATION PROCEDURE ... 68
The T cations .............................................. 69
The W anions ............................................... 69
The В cations .............................................. 69
The A and С cations ........................................ 72
NEW SCHEMES FOR THE CLASSIFICATION OF AMPHIBOLES ............... 73
AMPHIBOLES WITH (OH,F,Cl) DOMINANT AT W ........................ 73
The magnesium-iron-manganese amphiboles .................... 73
The calcium amphiboles ..................................... 74
The sodium-calcium amphiboles .............................. 77
The sodium amphiboles ...................................... 78
The lithium amphiboles ..................................... 79
The sodium-magnesium-iron-manganese amphiboles ............. 79
AMPHIBOLES WITH O2- DOMINANT AT W .............................. 80
MAJOR DIFFERENCES BETWEEN THE CURRENT CLASSIFICATION AND
SCHEMES 1 AND 2 .............................................. 80
THE TWO SCHEMES: FOR AND AGAINST ............................... 82
Recognition of the sodium-calcium and lithium-
(magnesium-iron-manganese) groups ........................ 82
Retention versus removal of intermediate amphibole
compositions ............................................. 82
SUMMARY ........................................................ 82
ACKNOWLEDGMENTS ................................................ 83
REFERENCES ..................................................... 83
APPENDIX I: REJECTED, REDEFINED AND RENAMED END-MEMBERS ........ 85
3 New Amphibole Compositions: Natural and Synthetic
Roberta Oberti, Giancarlo Delia Ventura, Fernando Cámara
INTRODUCTION ................................................... 89
NEW NATURAL-AMPHIBOLES COMPOSITIONS ............................ 89
Sadanagaites: how much TAl can occur in the amphibole
structure? ............................................... 90
Fluorocannilloite and joesmithite: constraints for
divalent cations at the A site ........................... 95
Li in amphiboles: clinoholmquistites, leakeites and
sodic-pedrizites ......................................... 96
Other amphiboles with nearly equal amounts of large
(Na, Ca) and small (Li, Mg, Mn, Fe) В cations:
composition and symmetry ................................ 101
Anhydrous sodic amphiboles: ungarettiite, obertiite,
dellaventuraite ......................................... 102
NEW COMPOSITIONS FOR SYNTHETIC AMPHIBOLES ..................... 104
Synthetic amphiboles with cations other than Si and Al
at the T sites .......................................... 104
Synthetic amphiboles with uncommon С cations .............. 110
Synthetic amphiboles with uncommon В cations .............. 112
Synthetic amphiboles with uncommon A cations .............. 114
Common and uncommon W anions .............................. 116
Synthesis of amphiboles in the system
Na2O-Li2O-MgO-SiO2-H2O-HF (LNMSH) ........................ 116
CONCLUDING REMARKS ............................................ 117
ACKNOWLEDGMENTS ............................................... 117
REFERENCES .................................................... 117
Long-Range Order in Amphiboles
Roberta Oberti, Frank C. Hawthorne, Elio Cannillo, Fernando Camara
INTRODUCTION .................................................. 125
METHODS OF DERIVING SITE POPULATIONS .......................... 125
Single-crystal Structure REFinement ....................... 125
Mossbauer spectroscopy .................................... 129
Infrared spectroscopy ..................................... 131
Other spectroscopic methods ............................... 134
SITE PREFERENCES OF THE MOST COMMON CATIONS ................... 134
Aluminum .................................................. 134
Beryllium ................................................. 140
Boron ..................................................... 141
Calcium ................................................... 141
Cobalt and nickel ......................................... 141
Chromium, vanadium, scandium and indium ................... 141
Gallium ................................................... 142
Germanium ................................................. 143
Ferrous iron .............................................. 143
Ferric iron ............................................... 146
Lithium ................................................... 148
Magnesium ................................................. 151
Manganese ................................................. 151
Potassium ................................................. 152
Sodium .................................................... 152
Strontium ................................................. 152
Titanium .................................................. 152
Zinc ...................................................... 154
Zirconium ................................................. 154
ANION INCORPORATION IN AMPHIBOLES ............................. 155
Chlorine .................................................. 155
Fluorine .................................................. 156
Hydrogen (as OH-) ......................................... 157
THE OXO COMPONENT: A DETAILED DISCUSSION ...................... 157
HYDROGEN IN EXCESS OF 2.0 APFU ................................ 162
FACTORS AFFECTING ORDERING OF CATIONS IN THE AMPHIBOLE
STRUCTURE ................................................. 163
ACKNOWLEDGMENTS ............................................... 164
REFERENCES .................................................... 164
5 Short-Range Order in Amphiboles
Frank C. Hawthorne, Giancarlo Delia Ventura
INTRODUCTION .................................................. 173
LONG-RANGE ORDER .............................................. 173
SHORT-RANGE ORDER ............................................. 173
BOND-VALENCE ASPECTS OF SRO ................................... 175
SRO of heterovalent versus homovalent cations and
anions .................................................. 176
(OH) AS A PROBE OF LOCAL ORDER IN AMPHIBOLE ................... 176
Mg-Fe2+ order-disorder over M( 1) and M(3) and its effect
on the infrared spectrum ................................ 177
M2+-M3+ order-disorder over M(1) and M(3) and its effect
on the infrared spectrum ................................ 177
NEXT-NEAREST NEIGHBOR EFFECTS: SRO OF HETEROVALENT-CATIONS
IN TREMOLITE ................................................ 178
Infrared absorption in related amphiboles ................. 179
The effect of next-nearest-neighbor (NNN) cations ......... 180
Derivation of patterns of SRO ............................. 181
SRO of heterovalent cations in tremolite(56):
application of bond-valence theory ...................... 181
NEAREST- AND NEXT-NEAREST-NEIGHBOR EFFECTS .................... 182
Nearest-neighbor sites: configuration symbols and atom
arrangements ............................................ 182
NNN sites: the T sites .................................... 183
NNN sites: the M sites .................................... 183
The number of possible short-range arrangements of
cations ................................................. 184
SHORT-RANGE ORDER AND SHORT-RANGE DISORDER .................... 184
SPECTRAL VARIATION IN THE INFRARED SPECTRA OF AMPHIBOLES ...... 185
Peak width and band width ................................. 185
Band position (energy) as a function of composition ....... 185
Resolution in infrared spectra ............................ 186
SHORT-RANGE DISORDER OF DIVALENT В CATIONS IN TREMOLITE ....... 187
The infrared spectrum of synthetic tremolite .............. 188
SRO IN RICHTERITE-PARGASITE SOLID-SOLUTIONS ................... 190
The number of stable arrangements ......................... 190
Band assignment ........................................... 191
SRO IN TREMOLITE-MAGNESIOHORNBLENDE SOLID-SOLUTIONS ........... 192
SRO IN PARVO-MANGANO-EDENITE .................................. 197
SHORT-RANGE ORDER-DISORDER OF (OH) AND F IN AMPHIBOLES ........ 198
One-mode and two-mode behavior ............................ 199
The stereochemistry of local coupling within the
amphibole structure ..................................... 200
Local arrangements in (OH,F)-bearing amphibole
solid-solutions ......................................... 201
Testing for SRO of (OH) and F in richterite ............... 201
Testing for SRO of (OH) and F in pargasite ................ 203
SHORT-RANGE DISORDER OF Ti4+ AND Si ........................... 204
Band assignment ........................................... 205
Local stereochemistry ..................................... 205
SHORT-RANGE ORDER OF Ti4+ AND O2- .............................. 205
SHORT-RANGE ORDER OF CATIONS AROUND THE A SITE ................ 207
C2/m amphiboles ........................................... 207
The effects of variation in T(Al,Si) and C(M2+, M3+) ........ 210
The effects of variation in O(3)(OH,F) ..................... 211
The relative stability of local arrangements .............. 213
Assignment of local arrangements in structures ............ 213
SUMMARY ....................................................... 216
ACKNOWLEDGMENTS ............................................... 217
REFERENCES .................................................... 217
APPENDIX I: (Mg,Fe2+) ORDER-DISORDER AND BAND INTENSITIES IN
THE IR SPECTRUM ........................................... 222
6 Non-Ambient in situ Studies of Amphiboles
Mark D. Welch, Fernando Cámara
Giancarlo Delia Ventura, Gianluca Iezzi
INTRODUCTION .................................................. 223
TRANSITIONAL BEHAVIOR ......................................... 224
The nature of the P2l/m ↔ HT-C2/m transition in
amphiboles .............................................. 224
Application of the Landau Theory of phase transitions ..... 226
Spectroscopy of structural phase transitions in
amphibole: introductory comments ........................ 231
(Mg,Fe) cummingtonite: high-T studies ..................... 232
(Mg,Fe) cummingtonite: high-P studies of the HT-C2/m →
P2l/m transition ........................................ 232
Mn-Mg cummingtonite ....................................... 238
P2l/m ↔ HT-C2/m transition in synthetic amphiboles ........ 239
Overall compositional trends and the P2l/m ↔ HT-C2/m
transition .............................................. 243
Comparisons with the P2l/c ↔ C2/c transitions in
pyroxenes ............................................... 243
A possible high-pressure P2l/m ↔ "HP-C2/m" transition in
amphibole: synthetic ANa B(NaMg) CMg5 TSi8 O22 W(OH)2
and ANa B(LiMg) CMg5 TSi8 O22 W(OH)2 ...................... 246
Other transitional behavior ............................... 247
IN SITU HIGH-TEMPERATURE STUDIES OF CATION ORDER-DISORDER ..... 249
In situ high-T neutron diffraction studies of
amphiboles .............................................. 249
Mg-Mn and Fe-Mn ordering in mangano-manganocummingtonite
and manganogrunerite .................................... 249
C(Ni-Mg) disorder in K-richterite ......................... 252
AMPHIBOLE COMPRESSIBILITIES ................................... 252
THERMAL EXPANSIVITIES ......................................... 257
IDEAS FOR FUTURE STUDIES AND DIRECTIONS ....................... 257
REFERENCES .................................................... 258
7 The Synthesis and Stability of Some End-Member
Amphiboles
Bernard W. Evans
INTRODUCTION .................................................. 261
TREMOLITE Ca2Mg5Si8O22(OH)2 ................................... 262
FERRO-ACTINOLITE Ca2Fe5Si8O22(OH)2 ............................ 266
ANTHOPHYLLITE Mg2Mg5Si8O22(OH)2 ............................... 269
GRUNERITE Fe2Fe5Si8O22(OH)2 ................................... 271
GLAUCOPHANE Na2(Mg3Al2)Si8O22(OH)2 ............................ 271
RIEBECKITE-ARFVEDSONITE
Na2(Fe2+,Fe3+2)Si8O22(OH)2-NaNa2(Fe2+4Fe3+)Si8O22(OH)2 ......... 272
MAGNESIORIEBECKITE-MAGNESIO-ARFVEDSONITE
Na2(Mg3Fe3+2)Si8O22(OH)2-NaNa2(Mg4Fe3+)Si8O22(OH)2 ............. 278
RICHTERITE Na(CaNa)Mg5Si8O22(OH)2 .............................. 279
PARGASITE NaCa2(Mg4Al)Si6Al2O22(OH)2 ............................ 280
TSCHERMAKITE Ca2(Mg3Al2)Si6Al2O22(OH)2 ......................... 280
GENERAL CONCLUSIONS ........................................... 281
ACKNOWLEDGMENTS ............................................... 282
REFERENCES .................................................... 282
8 The Significance of the Reaction Path in
Synthesizing Single-Phase Amphibole of Denned
Composition
Walter V. Maresch, Michael Czank
INTRODUCTION .................................................. 287
INHERENT PROBLEMS ASSOCIATED WITH THE EXPERIMENTAL METHOD ..... 289
POLYSOMATIC REACTION PATHS .................................... 289
Defect structures as a proxy for the reaction path ........ 289
End-member synthetic tremolite ............................ 295
Amphibole solid solutions radiating from synthetic
end-member tremolite .................................... 302
Synthetic amphiboles in the system MgO-FeO-MnO-SiO2-H2O ... 304
Is there a recipe? ........................................ 312
AMPHIBOLE SOLID SOLUTIONS RADIATING FROM SYNTHETIC
AMPHIBOLES IN THE SYSTEM MgO-FeO-MnO-SiO2-H2O ............... 313
THE FLUID PHASE AND THE REACTION PATH ......................... 314
Synthesis with dissolved chlorides in the coexisting
fluid ................................................... 314
Synthesis with a saturated aqueous fluid .................. 317
CONCLUSIONS ................................................... 319
ACKNOWDLEDGMENTS .............................................. 319
REFERENCES .................................................... 319
9 Amphiboles in the Igneous Environment
Robert F. Martin
INTRODUCTION .................................................. 323
AMPHIBOLES IN IGNEOUS ROCKS ASSOCIATED WITH EXTENSION IN THE
CRUST ....................................................... 324
Pargasite - hawaiitic magma as a pseudo-unary system? ..... 324
The importance of pargasite in the fertilization of the
upper mantle ............................................ 325
The importance of pargasite in the generation of alkaline
basic magma in the mantle ............................... 327
The oxidation state of iron in mantle-derived amphiboles
in nodules and megacrysts ............................... 329
Amphibole minerals in derivatives of alkaline basic
magmas .................................................. 330
Amphiboles in juxtaposed SiO2-undersaturated and
SiO2-oversaturated derivatives .......................... 335
Amphiboles in SiO2-oversaturated anorogenic suites ........ 335
THE AMPHIBOLE MINERALOGY OF OTHER MANTLE-DERIVED ROCKS ........ 337
Amphiboles in kimberlites and lamproites .................. 337
Amphiboles in carbonatites and associated metasomatic
rocks ................................................... 339
The amphibole mineralogy of "anatectic
pseudocarbonatites" ..................................... 341
AMPHIBOLES IN IGNEOUS ROCKS ASSOCIATED WITH COMPRESSION IN
THE CRUST ................................................... 342
The amphibole mineralogy of arc-related rocks ............. 343
Amphibole-rich clots in calc-alkaline granitic rocks ...... 346
The question of appinites ................................. 348
Amphibole-dominant pegmatites in Alaskan-Uralian-type
complexes ............................................... 348
The occurrence of two-amphibole pairs ..................... 349
Metasomatic phenomena ..................................... 351
AMPHIBOLE IN METEORITES ....................................... 352
CONCLUDING STATEMENT .......................................... 353
ACKOWLEDGMENTS ................................................ 353
REFERENCES .................................................... 353
10 Metamorphic Amphiboles: Composition and Coexistence
John C. Schumacher
INTRODUCTION .................................................. 359
CHEMICAL SUBSTITUTION IN METAMORPHIC AMPHIBOLES ............... 360
The amphibole formula ..................................... 360
Formula basis and estimates of Fe3+ ....................... 361
Amphibole composition space used here ..................... 361
COMPOSITIONS OF METAMORPHIC AMPHIBOLES ........................ 364
Amphibole data ............................................ 364
Edenite, tschermakite and glaucophane component vectors,
and XMg and XcAl in calcic, sodic-calcic and sodic
amphiboles .............................................. 366
Edenite, tschermakite and glaucophane component vectors,
and XMg and XcAl in (Mg, Fe, Mn) amphiboles .............. 370
Variations in Mg/(Mg + Fe2+) .............................. 375
Compositional variations in Mg, Fe2+, Mn2+ and total R2+ ... 375
Compositional variations at the A-site .................... 381
COEXISTING METAMORPHIC AMPHIBOLES ............................. 384
Assemblages with multiple amphiboles ...................... 384
Evaluating equilibrium coexistence ........................ 384
The basic crystal chemistry of equilibrium coexistence .... 387
Cummingtonite-hornblende .................................. 389
Orthoamphibole-hornblende ................................. 393
Orthoamphibole-cummingtonite .............................. 396
Coexisting orthoamphiboles ................................ 396
Coexisting calcic amphiboles .............................. 398
Coexistence involving sodic and sodic-calcic amphiboles ... 400
Coexistence of three or more amphiboles ................... 400
FINAL REMARKS ................................................. 402
ACKNOWLEDGMENTS ............................................... 403
REFERENCES .................................................... 403
SOURCES OF AMPHIBOLE ANALYSES ................................. 406
APPENDIX I .................................................... 413
Recalculating amphibole formulae from electron
microprobe analyses ..................................... 413
11 Trace-Element Partitioning Between Amphibole and
Silicate Melt
Massimo Tiepolo, Roberta Oberti, Alberto Zanetti
Riccardo Vannucci, Stephen F. Foley
INTRODUCTION .................................................. 417
PARTITION COEFFICIENTS ........................................ 420
FACTORS AFFECTING SOLID/LIQUID PARTITION COEFFICIENTS ......... 421
AMPH/LD FOR THE LIGHT LITHOPHILE ELEMENTS (LLE) ................. 422
Source of data ............................................ 422
Overall values ............................................ 422
Site preference ........................................... 423
Factors affecting Amph/LDLEE ................................ 423
AMPH/LD FOR ALKALINE AND ALKALINE-EARTH LARGE ION LITHOPHILE
ELEMENTS (LILE) ............................................. 425
Source of data ............................................ 425
Overall values ............................................ 425
Site preference ........................................... 425
Factors affecting Amph/LDLILE ................................ 425
AMPH/LD FOR RARE EARTH ELEMENTS (REE) AND Y ..................... 428
Source of data ............................................ 428
Overall values ............................................ 428
Site preference ........................................... 428
Factors affecting Amph/LDREE ............................... 432
AMPH/LD FOR HIGH FIELD STRENGTH ELEMENTS (HFSE) ................ 435
Source of data ............................................ 435
Overall values ............................................ 435
Site preference ........................................... 438
Factors affecting Amph/LDHFSE ............................... 439
AMPH/LD FOR ACTINIDES AND Pb ................................... 441
Source of data ............................................ 441
Overall values ............................................ 441
Site preference ........................................... 442
Factors affecting Amph/LDU,Th,Pb ............................. 442
AMPH/LD FOR TRANSITION METALS (Cr, V AND Sc) ................... 443
Source of data ............................................ 443
Overall values ............................................ 444
Site preference ........................................... 444
Factors affecting Amph/LDCr,V,Sc ............................. 444
DIFFERENCES TO THE PARTITIONING BEHAVIOR OBSERVED
IN POTASSIC-RICHTERITES ..................................... 445
ON THE CORRECT CHOICE OF AMPH/LD ................................ 448
ACKNOWLEDGMENTS ............................................... 449
REFERENCES .................................................... 449
12 Amphiboles: Environmental and Health Concerns
Mickey E. Gunter, Elena Belluso, Annibale Mottana
INTRODUCTION .................................................. 453
NOMENCLATURE AND BACKGROUND INFORMATION ....................... 454
Mineralogical ............................................. 454
Medical ................................................... 457
ANALYTICAL METHODS ............................................ 460
Microscopic methods ....................................... 460
DIFFRACTION METHODS ........................................... 464
Chemical determination .................................... 466
MORPHOLOGY MATTERS ............................................ 469
REGULATORY AND LEGAL ISSUES ................................... 472
Regulated mineral species ................................. 473
GEOLOGICAL OCCURRENCE ......................................... 475
Association with rock type ................................ 475
Association with other fibrous minerals ................... 477
Amphiboles in soils and unconsolidated material ........... 478
OCCUPATIONAL VS. NONOCCUPATIONAL EXPOSURE ..................... 479
CURRENT EXAMPLES OF AMPHIBOLE EXPOSURE ........................ 483
Libby, Montana, USA ....................................... 483
El Dorado Hills, California, USA .......................... 486
Biancavilla, Sicily, Italy ................................ 492
AMPHIBOLES IN BIOLOGICAL MATERIALS AND ASSOCIATED
BIO-MARKERS ................................................. 494
Amphibole in human lungs .................................. 495
Biomarkers ................................................ 499
Amphiboles in animal lungs ................................ 501
Amphiboles in human urine ................................. 503
Conclusion for humans and animals ......................... 504
STABILITY OF AMPHIBOLES ....................................... 504
Temperature conversions ................................... 505
In the lung ............................................... 506
FUTURE AREAS OF RESEARCH ...................................... 507
SUMMARY ....................................................... 508
ACKNOWLEDGMENTS ............................................... 508
REFERENCES .................................................... 509
13 Amphiboles: Historical Perspective
Curzio Cipriani
INTRODUCTION .................................................. 517
ANTIQUITY ..................................................... 518
THE EIGHTEENTH CENTURY ........................................ 518
THE NINETEENTH CENTURY ........................................ 521
THE TWENTIETH CENTURY ......................................... 535
PROBLEM OF WATER .............................................. 541
NOMENCLATURE .................................................. 542
CONCLUSIONS ................................................... 544
REFERENCES .................................................... 544
|