Korsch H.J. Chaos (B., 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаKorsch H.J. Chaos: A program collection for the PC with CD-ROM / Korsch H.J., Jodl H.-J., Hartmann T. - 3rd ed. - В.: Springer, 2008. - 341 p. - ISBN 978-3-540-74866-3
 

Оглавление / Contents
 
1 Overview and Basic Concepts ................................... 1
  1.1 Introduction .............................................. 1
  1.2 The Programs .............................................. 5
  1.3 Literature on Chaotic Dynamics ............................ 8

2 Nonlinear Dynamics and Deterministic Chaos ................... 11
  2.1 Deterministic Chaos ...................................... 12
  2.2 Hamiltonian Systems ...................................... 13
       2.2.1 Integrable and Ergodic Systems .................... 13
       2.2.2 Poincaré Sections ................................. 16
       2.2.3 The KAM Theorem ................................... 18
       2.2.4 Homoclinic Points ................................. 20
  2.3 Dissipative Dynamical Systems ............................ 22
       2.3.1 Attractors ........................................ 24
       2.3.2 Routes to Chaos ................................... 26
  2.4 Special Topics ........................................... 27
       2.4.1 The Poinearé-Birkliotf Theorem .................... 28
       2.4.2 Continued Fractions ............................... 29
       2.4.3 The Lyapmiov Exponent ............................. 32
       2.4.4 Fixed Points of One-Dimensional Maps .............. 35
       2.4.5 Fixed Points of Two-Dimensional Maps .............. 38
       2.4.6 Bifurcations ...................................... 44
  References ................................................... 45

3 Billiard Systems ............................................. 47
  3.1 Deformations of a Circle Billiard ........................ 50
  3.2 Numerical Techniques ..................................... 53
  3.3 Interacting with the Program ............................. 54
  3.4 Computer Experiments ..................................... 58
      3.4.1 From Regularity to Chaos ........................... 58
      3.4.2 Zooming In ......................................... 60
      3.4.3 Sensitivity and Determinism ........................ 61
      3.4.4 Suggestions for Additional Experiments ............. 63
  3.5 Suggestions for Further Studies .......................... 66
  3.6 Real Experiments and Empirical Evidence .................. 66
  References ................................................... 67

4 Gravitational Billiards: The Wedge ........................... 69
  4.1 The Poincaré Mapping ..................................... 70
  4.2 Interacting with the Program ............................. 75
  4.3 Computer Experiments ..................................... 77
      4.3.1 Periodic Motion and Phase Space Organization ....... 77
      4.3.2 Bifurcation Phenomena .............................. 81
      4.3.3 'Plane Filling' Wedge Billiards .................... 86
      4.3.4 Suggestions for Additional Experiments ............. 88
  4.4 Suggestions for Further Studies .......................... 89
  4.5 Real Experiments and Empirical Evidence .................. 90
  References ................................................... 90

5 The Double Pendulum	 ....................................... 91
  5.1 Equations of Motion ...................................... 91
  5.2 Numerical Algorithms ..................................... 93
  5.3 Interacting with the Program ............................. 93
  5.4 Computer Experiments ..................................... 98
      5.4.1 Different Types of Motion .......................... 98
      5.4.2 Dynamics of the Double Pendulum ................... 102
      5.4.3 Destruction of Invariant Curves ................... 107
      5.4.4 Suggestions for Additional Experiments ............ 110
  5.5 Real Experiments and Empirical Evidence ................. 111
  References .................................................. 113

6 Chaotic Scattering .......................................... 115
  6.1 Scattering off Three Disks .............................. 117
  6.2 Numerical Techniques .................................... 121
  6.3 Interacting with the Program ............................ 121
  6.4 Computer Experiments .................................... 124
      6.4.1 Scattering Functions and Two-Disk Collisions ...... 124
      6.4.2 Tree Organization of Three-Disk Collisions ........ 127
      6.4.3 Unstable Periodic Orbits .......................... 129
      6.4.4 Fractal Singularity Structure ..................... 131
      6.4.5 Suggestions for Additional Experiments ............ 133
  6.5 Suggestions for Further Studies ......................... 135
  6.6 Real Experiments and Empirical Evidence ................. 136
  References .................................................. 136

7 Fermi Acceleration .......................................... 137
  7.1 Fermi Mapping ........................................... 138
  7.2 Interacting with the Program ............................ 139
  7.3 Computer Experiments .................................... 142
      7.3.1 Exploring Phase Space for Different Wall
            Oscillations ...................................... 142
      7.3.2 KAM Curves and Stochastic Acceleration ............ 144
      7.3.3 Fixed Points and Linear Stability ................. 146
      7.3.4 Absolute Barriers ................................. 148
      7.3.5 Suggestions for Additional Experiments ............ 150
  7.4 Suggestions for Further Studies ......................... 154
  7.5 Real Experiments and Empirical Evidence ................. 154
  References .................................................. 155

8 The Duffing Oscillator ...................................... 157
  8.1 The Duffing Equation .................................... 157
  8.2 Numerical Techniques  ................................... 161
  8.3 Interacting with the Program ............................ 161
  8.4 Computer Experiments .................................... 168
      8.4.1 Chaotic and Regular Oscillations .................. 168
      8.4.2 The Free Duffing Oscillator ....................... 168
      8.4.3 Anharmonic Vibrations: Resonances and
            Bistability ....................................... 171
      8.4.4 Coexisting Limit Cycles and Strange Attractors .... 174
      8.4.5 Suggestions for Additional Experiments ............ 170
  8.5 Suggestions for Further Studies ......................... 181
  8.6 Real Experiments and Empirical Evidence ................. 181
  References .................................................. 183

9 Feigenbaum Scenario ......................................... 185
  9.1 One-Dimensional Maps .................................... 180
  9.2 Interacting with the Program ............................ 188
  9.3 Computer Experiments .................................... 191
      9.3.1 Period-Doubling Bifurcations ...................... 191
      9.3.2 The Chaotic Regime ................................ 195
      9.3.3 Lyapunov Exponents ................................ 199
      9.3.4 The Twit Map ...................................... 200
      9.3.5 Suggestions for Additional Experiments ............ 202
  9.4 Suggestions lor Further Studies ......................... 200
  9.5 Real Experiments and Empirical Evidence ................. 208
  References .................................................. 209

10 Nonlinear Electronic Circuits .............................. 211
   10.1 A Chaos Generator ..................................... 211
   10.2 Numerical Techniques .................................. 214
   10.3 Interacting with the Program .......................... 215
   10.1 Computer Experiments .................................. 220
        10.4.1 Hopf Bifurcation ............................... 220
        10.4.2 Period-Doubling ................................ 221
        10.4.3 Return Map ..................................... 225
        10.4.4 Suggestions for Additional experiments ......... 220
   10.5 Real Experiments and Empirical Evidence ............... 229
   References ................................................. 230

11 Mandelbrot and Julia Sets .................................. 231
   11.1 Two-Dimensional Iterated Maps ......................... 231
   11.2 Numerical Methods ..................................... 235
   11.3 Interacting with the Program .......................... 236
   11.4 Computer Experiments .................................. 242
        11.4.1 Mandelbrot and Julia-sets ...................... 242
        11.4.2 Zooming into the Mandelbrot Set ................ 244
        11.4.3 General Two-Dimensional Quadratic Mappings ..... 245
        11.4.4 Suggestions for Additional Experiments ......... 249
   11.5 Suggestions for Further Studies ....................... 251
   11.6 Real Experiments and Empirical Evidence ............... 252
   References ................................................. 253

12 Ordinary Differential Equations ............................ 255
   12.1 Numerical Techniques .................................. 256
   12.2 Interacting with the Program .......................... 256
   12.3 Computer Experiments .................................. 268
        12.3.1 The Pendulum ................................... 268
        12.3.2 A Simple Hopf Bifurcation ...................... 270
        12.3.3 The Duffing Oscillator Revisited ............... 273
        12.3.4 Hill's Equation ................................ 275
        12.3.5 The Lorenz Attractor ........................... 281
        12.3.6 The Rössler Attractor .......................... 284
        12.3.7 The Henon-Heiles System ........................ 285
        12.3.8 Suggestions for Additional Experiments ......... 288
   12.4 Suggestions for Further Studies........................ 293
   References ................................................. 298

13 Kicked Systems ............................................. 301
   13.1 Interacting with the Program .......................... 303
   13.2 Computer Experiments .................................. 307
        13.2.1 The Standard Mapping ........................... 307
        13.2.2 The Kicked CJuartie Oscillator ................. 309
        13.2.3 The Kicked Quartic Oscillator with Damping ..... 311
        13.2.4 The Hénon Map .................................. 312
        13.2.5 Suggestions for Additional Experiments ......... 313
   13.3 Real Experiments and Empirical Evidence ............... 310
   References ................................................. 310

A System Requirements and Program Installation ................ 310
  A.1 System Requirements ..................................... 319
  A.2 Installing the Programs ................................. 319
      A.2.1 Windows Operating System .......................... 320
      A.2.2 Linux Operating System ............................ 320
  A.3 Programs ................................................ 321
  A.4 Third Party Software .................................... 321

В General Remarks on Using the Programs ....................... 323
  B.1 Interaction with the Programs ........................... 323
  B.2 Input of Mathematical Expressions ....................... 325

Glossary ...................................................... 327

Index ......................................................... 335


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:50 2019. Размер: 15,160 bytes.
Посещение N 1692 c 26.04.2010