M. Al-Horani and A. Favini:
Degenerate first order identification problems in Banach
spaces .......................................................... 1
V. Berti and M. Fabrizio:
A nonisothermal dynamical Ginzburg-Landau model of
superconductivity. Existence and uniqueness theorems ........... 17
F. Colombo, D. Guidetti and V. Vespri:
Some global in time results for integrodifferential
parabolic inverse problems ..................................... 35
A. Favini, G. Ruiz Goldstein, J. A. Goldstein, and S. Romanelli:
Fourth order ordinary differential operators with general
Wentzell boundary conditions ................................... 59
A. Favini, R. Labbas, S. Maingot, H. Tanabe and A. Yagi:
Study of elliptic differential equations in UMD spaces ...... 73
A. Favini, A. Lorenzi and H. Tanabe:
Degenerate integrodifferential equations of parabolic
type ........................................................... 91
A. Favini, A. Lorenzi and A. Yagi:
Exponential attractors for semiconductor equations ......... 111
S. Gatti and M. Grasselli:
Convergence to stationary states of solutions to the
semilinear equation of viscoelasticity ........................ 131
S. Gatti and A. Miranville:
Asymptotic behavior of a phase field system with dynamic
boundary conditions ........................................... 149
M. Geissert, B. Grec, M. Hieber and E. Radkevich:
The model-problem associated to the Stefan problem with
surface tension: an approach via Fourier-Laplace
multipliers ................................................... 171
G. Ruiz Goldstein, J. A. Goldstein and I. Kombe:
The power potential and nonexistence of positive
solutions ..................................................... 183
A. Lorenzi and H. Tanabe:
Inverse and direct problems for nonautonomous degenerate
integrodifferential equations of parabolic type with
Dirichlet boundary conditions ................................. 197
F. Luterotti, G. Schimperna and U. Stefanelli:
Existence results for a phase transition model based on
microscopic movements ......................................... 245
N. Okazawa:
Smoothing effects and strong L2-wellposedness in the
complex Ginzburg-Landau equation .............................. 265
|