Warsi Z.U.A. Fluid dynamics: theoretical and computational approaches (Boca Raton, 2006). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаWarsi Z.U.A. Fluid dynamics: theoretical and computational approaches. - 3rd ed. - Boca Raton, Fla.; London: Taylor & Francis, 2006. - 845 p. - ISBN 0-8493-3397-0
 

Оглавление / Contents
 
Chapter 1   Kinematics of Fluid Motion .......................... 1
1.1     Introduction to Continuum Motion ........................ 1
1.2     Fluid Particles ......................................... 1
1.3     Inertial Coordinate Frames .............................. 2
1.4     Motion of A Continuum ................................... 2
1.5     The Time Derivatives .................................... 6
1.6     Velocity and Acceleration ............................... 6
1.7     Steady and Nonsteady Flow .............................. 10
1.8     Trajectories of Fluid Particles and Streamlines ........ 11
1.9     Material Volume and Surface ............................ 12
1.10    Relation Between Elemental Volumes ..................... 13
1.11    Kinematic Formulas of Euler and Reynolds ............... 13
1.12    Control Volume and Surface ............................. 16
1.13    Kinematics of Deformation .............................. 17
1.14    Kinematics of Vorticity and Circulation ................ 22
        Vortex Line ............................................ 22
        Vortex Tube ............................................ 22
        Circulation of Velocity ................................ 24
        Rate of Change of Circulation .......................... 24
References ..................................................... 25
Problems ....................................................... 26

Chapter 2   The Conservation Laws and the Kinetics of Flow ..... 33
2.1     Fluid Density and the Conservation of Mass ............. 33
2.2     Principle of Mass Conservation ......................... 33
        Time Variation of ρP ................................... 34
        Particular Forms of the Continuity Equation ............ 35
2.3     Mass Conservation Using A Control Volume................ 35
2.4     Kinetics of Fluid Flow.................................. 36
        Stress Principle of Cauchy ............................. 36
2.5     Conservation of Linear and Angular Momentum ............ 37
        Conservation of Linear Momentum ........................ 37
        Conservation of Angular Momentum ....................... 38
        Nature of Stress Vector ................................ 38
        Symmetry of T .......................................... 41
2.6     Equations of Linear and Angular Momentum ............... 42
2.7     Momentum Conservation Using A Control Volume ........... 44
2.8     Conservation of Energy ................................. 44
2.9     Energy Conservation Using A Control Volume ............. 47
2.10    General Conservation Principle ......................... 47
2.11    The Closure Problem .................................... 48
2.12    Stokes' Law of Friction ................................ 51
        The Postulates of Stokes ............................... 52
        Stokesian Stress Tensor ................................ 52
2.13    Interpretation of Pressure ............................. 57
2.14    The Dissipation Function ............................... 58
2.15    Constitutive Equation for Non-Newtonian Fluids ......... 59
2.16    Thermodynamic Aspects of Pressure and Viscosity ........ 61
        Ideal Gases ............................................ 62
        Concept of Viscosity in Fluids ......................... 64
        Sutherland Formula for Viscosity ....................... 66
2.17    Equations of Motion in Lagrangian Coordinates .......... 67
References ..................................................... 71
Problems ....................................................... 71

Chapter 3    The Navier-Stokes Equations ....................... 75
3.1     Formulation of the Problem ............................. 75
3.2     Viscous Compressible Flow Equations .................... 78
        Conservation of Mass ................................... 78
        Conservation of Momentum ............................... 78
        Equations of Mechanical Energy ......................... 78
        Equations of Internal Energy ........................... 78
        Equations of Entropy and Enthalpy ...................... 79
        Conservation of Total Kinetic Energy ................... 80
3.3     Viscous Incompressible Flow Equations .................. 80
        Conservation of Mass ................................... 80
        Conservation of Momentum ............................... 80
        Equation of Vorticity .................................. 81
        Equation of Internal Energy ............................ 82
        Equation for Pressure .................................. 82
3.4     Equations of Inviscid Flow (Euler's Equations) ......... 83
        Conservation of Mass ................................... 83
        Conservation of Momentum ............................... 84
        Equations of Entropy and Enthalpy ...................... 84
        Conservation of Energy ................................. 84
        Conservation of Total Kinetic Energy ................... 84
        Inviscid Barotropic Flow ............................... 84
3.5     Initial and Boundary Conditions ........................ 85
3.6     Mathematical Nature of the Equations ................... 86
3.7     Vorticity and Circulation .............................. 86
        Vorticity and Circulation for Inviscid Fluids .......... 87
            The Bernoulli Equation ............................. 89
3.8     Some Results Based on the Equations of Motion .......... 90
        Force Acting on a Solid Body ........................... 90
        Stress Vector and Tensor at a Surface .................. 91
        Vorticity Vector at a Surface .......................... 92
        Rate-of-Strain Tensor at a Surface ..................... 93
3.9     Nondimensional Parameters in Fluid Motion .............. 94
        Principle of Similarity ................................ 97
        Dynamic Similarity ..................................... 97
            Variable Nondimensional Parameters ................. 97
            Principle of Reynolds Number Similarity ............ 98
3.10    Coordinate Transformation .............................. 99
        Orthogonal Coordinates ................................ 100
        Navier-Stokes Equations in Orthogonal Coordinates ..... 105
        Nonorthogonal Curvilinear Coordinates ................. 107
            Steady Eulerian Coordinates ....................... 107
            Nonsteady Eulerian Coordinates .................... 110
        Equations in General Coordinates ...................... 115
            Equations in General Coordinates Using
            Contravariant Components .......................... 117
            Equations in General Coordinates Using
            Covariant Components .............................. 117
            Equations in General Coordinates with Vectors
            and Tensor Densities .............................. 118
            Equations in Nonsteady Eulerian Coordinates ....... 120
        Equations in Curvilinear Coordinates with Cartesian
        Velocity Components ................................... 124
3.11    Streamlines and Stream Surfaces ....................... 125
        Two-Dimensional Stream Function ....................... 125
        Stream Functions in Three Dimensions .................. 127
3.12    Navier-Stokes Equations in Stream Function Form ....... 129
        Two-Dimensional and Axially Symmetric Flows ........... 129
        Flows in Three Dimensions ............................. 130
        Profile Drag .......................................... 131
        Free Surface Problem Formulation ...................... 139
            Kinematic Conditions............................... 139
            Dynamic Conditions ................................ 144
References .................................................... 146
Problems ...................................................... 146

Chapter 4   Flow of Inviscid Fluids ........................... 161
4.1     Introduction .......................................... 161
        Part I: Inviscid Incompressible Flow................... 162
4.2     The Bernoulli Constant ................................ 162
4.3     Irrotational Flows .................................... 163
        Boundary Conditions ................................... 164
        Irrotational Flows in Two Dimensions .................. 165
        Examples of Analytic Functions for Inviscid Flows ..... 167
        Blasius Formulas for Force and Moment ................. 173
4.4     Method of Conformal Mapping in Inviscid Flows ......... 176
        Kutta-Joukowskii Transformation ....................... 178
            Pure Circulatory Motion around a Plate ............ 180
            Flow Past a Wing Profile .......................... 181
        An Iterative Method for the Numerical Generation of
            z = f (ξ) ................. 184
4.5     Sources, Sinks, and Doublets in Three Dimensions ...... 185
        Sources and Sinks in Three Dimensions ................. 187
        Doublets in Three Dimensions .......................... 188
        Induced Velocities Due to Line and Sheet Vortices ..... 189

        Part II: Inviscid Compressible Flow ................... 191
4.6     Basic Thermodynamics .................................. 191
        First Law of Thermodynamics ........................... 192
        Second Law of Thermodynamics .......................... 194
        Deductions from the Two Thermodynamic Laws ............ 196
        Specific Heats ........................................ 198
        Enthalpy .............................................. 199
        Maxwell Equations ..................................... 200
        Isentropic State ...................................... 202
        Speed of Sound ........................................ 202
        Thermodynamic Relations for an Ideal Gas .............. 203
        Perfect Gases ......................................... 204
4.7     Subsonic and Supersonic Flow .......................... 205
4.8     Critical and Stagnation Quantities .................... 207
4.9     Isentropic Ideal Gas Relations ........................ 208
4.10    Unsteady Inviscid Compressible Flow in
        One-dimension ......................................... 210
4.11    Steady Plane Flow of Inviscid Gases ................... 219
        Stream Function Formulation ........................... 219
        Irrotational Flow of an Inviscid Gas .................. 221
        Case of Small Perturbations ........................... 222
        Subsonic Flow ......................................... 223
        Supersonic Flow ....................................... 224
4.12    Theory of Shock Waves ................................. 228
        Shock Relations for an Arbitrarily Moving Shock ....... 229
            First Shock Condition ............................. 230
            Second Shock Condition ............................ 230
            Third Shock Condition ............................. 231
            Fourth Shock Condition ............................ 231
        Shock Surface, Slip Surface, and Contact
            Discontinuity ..................................... 233
        Energy Equation for a Shock Surface ................... 233
        Hugonoit Equation ..................................... 233
        Summary of All Shock Relations ........................ 234
            Case I: Shock Relations Without Using an
                Equation of State ............................. 234
            Case II: Shock Relations While Using an Equation
                of State ...................................... 235
        The Role of Entropy ................................... 236
        Stationary Shocks ..................................... 238
            Stationary Normal Shock ........................... 238
            Stationary Oblique Shocks ......................... 238
        Prandtl's Relation..................................... 240
        Shock Polar for Stationary Oblique Shocks ............. 242
References .................................................... 243
Problems ...................................................... 243

Chapter 5   Laminar Viscous Flow .............................. 263
        Part I: Exact Solutions ............................... 263
5.1     Introduction .......................................... 263
5.2     Exact Solutions ....................................... 264
        Flow on an Infinite Plate ............................. 264
        Flow Between Two Infinite Parallel Plates ............. 264
        Flow Between Rotating Coaxial Cylinders
            (Circular Couette Flow) ........................... 266
        Steady Flow through a Cylindrical Pipe
            (Hagen-Poiseuille Flow) ........................... 267
        Flow in the Entrance Region of a Circular Pipe ........ 270
        Nonsteady Unidirectional Flow ......................... 271
        Stokes Problems ....................................... 272
        Ekman Layer Problem ................................... 274
        Motion Produced Due to a Vortex Filament .............. 276
        Two-Dimensional Stagnation Point Flow
            (Hiemenz Flow) .................................... 278
        Axially Symmetric Stagnation Point Flow
            (Homann Flow) ..................................... 279
        Motion between Two Inclined Plates .................... 280
5.3     Exact Solutions for Slow Motion ....................... 284
        Flow Past a Rigid Sphere .............................. 285
        Flow Past a Rigid Circular Cylinder.................... 289

        Part II: Boundary Layers .............................. 294
5.4     Introduction .......................................... 294
5.5     Formulation of the Boundary Layer Problem ............. 296
        Method of Inner and Outer Limits....................... 301
5.6     Boundary Layer on 2-D Curved Surfaces ................. 302
        Boundary Layer Parameters ............................. 305
5.7     Separation of the 2-D Steady Boundary Layers .......... 307
5.8     Transformed Boundary Layer Equations .................. 312
        Similar Boundary Layers ............................... 314
        Boundary Layer on a Semi-Infinite Plate ............... 316
        Solution of the Blasius Equation ...................... 316
        Boundary Layer on a Wedge ............................. 320
        Numerical Solution of the Falkner-Skan Equation ....... 322
        Nonsimilar Boundary Layers ............................ 324
        Gortler's Series Solution ............................. 325
5.9     Momentum Integral Equation ............................ 330
        Solution of the Momentum Integral Equation ............ 332
        Choice of the Velocity Profile ........................ 335
5.10    Free Boundary Layers .................................. 336
        Flow in the Wake of a Flat Plate ...................... 337
        Two-Dimensional Jet ................................... 338
        Axially Symmetric Jet ................................. 340
5.11    Numerical Solution of the Boundary Layer Equation ..... 342
        Numerical Solution of the Diffusion Equation .......... 342
        Errors: Truncation and Round Off ...................... 343
        Crank and Nicolson .................................... 345
        Dufort and Frankel .................................... 345
        Three-Point Scheme .................................... 345
        Solution of the Boundary Layer Equation ............... 345
        The Box Method ........................................ 349
5.12    Three-Dimensional Boundary Layers ..................... 352
        The Metric Coefficients ............................... 352
        The Matching Conditions ............................... 353
        Equations in Rotating Coordinates ..................... 357
        Choice of Surface Coordinates ......................... 358
        Internal Cartesian Coordinates ........................ 361
        Nondevelopable Surfaces ............................... 362
        Physical Consequences of Three Dimensionality ......... 363
        Intrinsic Coordinates ................................. 363
        Domains of Dependence and Influence ................... 365
5.13    Momentum Integral Equations in Three Dimensions ....... 365
5.14    Separation and Attachment in Three Dimensions ......... 366
        Limiting Streamlines and Vortex Lines ................. 368
5.15    Boundary Layers on Bodies of Revolution and Yawed
        Cylinders ............................................. 370
        Mangler's Tranformation ............................... 371
        Boundary Layer on Yawed Cylinders ..................... 373
        Cross Flow ............................................ 374
        Transformed Equations for Yawed Cylinders ............. 376
5.16    Three-Dimensional Stagnation Point Flow ............... 376
5.17    Boundary Layer On Rotating Blades ..................... 377
5.18    Numerical Solution of 3-D Boundary Layer Equations .... 378
5.19    Unsteady Boundary Layers .............................. 380
        Purely Unsteady Boundary Layers ....................... 380
        Periodic Boundary Layers .............................. 383
        Separation of Unsteady Boundary Layers ................ 386
        Mathematical Formulation of the M-R-S Principle ....... 387
        Numerical Method of Solution of Unsteady Equations .... 388
5.20    Second-Order Boundary Layer Theory .................... 389
        Method of Matched Asymptotic Expansion ................ 391
        Outer Expansion ....................................... 392
        Some Important Derivatives at the Wall ................ 395
        Inner Expansion ....................................... 396
        The First- and Second-Order Boundary Layer Problems ... 397
        Matching of Inner and Outer Solutions ................. 398
        A Unified Second-Order-Correct Viscous Model........... 401
        Matching .............................................. 402
5.21    Inverse Problems in Boundary Layers ................... 404
        Inverse Formulation with Assigned Displacement
            Thickness ......................................... 405
5.22    Formulation of the Compressible Boundary Layer
        Problem ............................................... 407
        Estimation of the Viscous Terms ....................... 409
        External-Flow Equations and the Boundary Conditions ... 413
        Particular Cases ...................................... 413
        Numerical Solution of Compressible Boundary Layer
            Equations ......................................... 414

        Part III: Navier-Stokes Formulation ................... 418
5.23    Incompressible Flow ................................... 418
        Formulation of the Problem in Primitive Variables ..... 419
        Ad Hoc Modifications .................................. 420
        Formulation of the Problem in Vorticity/Potential
            Form .............................................. 421
        Vorticity-Stream Function Formulation ................. 421
        Vorticity-Potential Function Formulation .............. 422
        Integro-Differential Formulation ...................... 424
        Application of the Boundary Conditions ................ 426
        Basic Computational Aspects ........................... 427
5.24    Compressible Flow ..................................... 427
        Determination of Temperature .......................... 429
        Case of Mr → 0 ........................................ 430
        Numerical Formulation ................................. 431
5.25    Hyperbolic Equations and Conservation Laws ............ 434
        System of Quasi-linear Equations from the
            Conservation Equations ............................ 442
        Hyperbolic Equations in Higher Dimensions ............. 447
5.26    Numerical Transformation and Grid Generation .......... 448
        Equations for Grid Generation ......................... 449
        Gaussian Equations for Grid Generation ................ 450
5.27    Numerical Algorithms for Viscous Compressible Flows ... 451
        Nature of the Difference Schemes ...................... 456
        Formulation for Compressible Navier-Stokes
            Equations ......................................... 461
5.28    Thin-Layer Navier-Stokes Equations (TLNS) ............. 466
        Parabolized Navier-Stokes Equations (PNS) ............. 466
References .................................................... 467
Problems ...................................................... 470

Chapter 6   Turbulent Flow .................................... 489
        Part I: Stability Theory and the Statistical
        Description of Turbulence ............................. 489
6.1     Introduction .......................................... 489
6.2     Stability of Laminar Flows ............................ 489
        Formulation of the Problem ............................ 490
6.3     Formulation for Plane-Parallel Laminar Flows .......... 492
        Squire's Theorem ...................................... 495
        Temporal and Spatial Instabilities .................... 496
        Boundary Conditions for the Orr-Sommerfeld Equation ... 496
        Temporal Stability .................................... 500
6.4     Temporal Stability at Infinite Reynolds Number ........ 500
        Rayleigh's First Theorem .............................. 501
        Rayleigh's Second Theorem ............................. 501
6.5     Numerical Algorithm for the Orr-Sommerfeld Equation ... 505
6.6     Transition to Turbulence .............................. 507
6.7     Statistical Methods in Turbulent Continuum
        Mechanics ............................................. 509
        Average or Mean of Turbulent Quantities ............... 510
        Time and Space Averaging .............................. 510
            Time Average ...................................... 511
            Ensemble Average .................................. 511
            Space Average ..................................... 513
            Basic Axioms of Averaging ......................... 515
6.8     Statistical Concepts .................................. 515
        Probability Distribution Functions .................... 516
        Probability Density ................................... 517
        Mathematical Expectation .............................. 518
        Correlation Functions ................................. 519
        Stationary Processes .................................. 519
        Characteristic Functions .............................. 519
        Gaussian Distribution ................................. 521
6.9     Internal Structure in Physical Space .................. 522
        Second- and Third-Order Correlations .................. 522
        Dynamic Equation of Correlations ...................... 524
        Homogeneous Turbulence ................................ 527
        Homogeneous Shear Turbulence .......................... 528
        Isotropic Turbulence .................................. 528
        Analysis of Isotropic Turbulence ...................... 530
        Longitudinal and Lateral Correlations ................. 532
        Approximate Analysis .................................. 535
        Dynamic Equation for Isotropic Turbulence ............. 537
6.10    Internal Structure in the Wave-Number Space ........... 538
        Some General Definitions .............................. 538
        Dynamic Equation of Homogeneous Turbulence in
            k-Space ........................................... 540
        Analysis of Isotropic Turbulence in k-Space ........... 542
        Connection Between ū2 f (r, t) and E (k, t) ........... 545
        Formulation of 1-D Spectrum ........................... 547
        Taylor's Formulas ..................................... 549
6.11    Theory of Universal Equilibrium ....................... 550
        Determination of E (k, t) Based on Kolmogorov's
            Hypothesis ........................................ 551
        Transfer Theories ..................................... 552
            Heisenberg's Transfer Theory ...................... 553
            Pao's Transfer Theory ............................. 555
        Comparison of Taylor's and Kolmogorov's Dissipation
            Lengths ........................................... 556
        Integral Length and Timescales ........................ 558

        Part II: Development of Averaged Equations ............ 559
6.12    Introduction .......................................... 559
6.13    Averaged Equations for Incompressible Flow ............ 559
        Equation of Turbulence Kinetic Energy ................. 562
        Equation of Mean-Square Vorticity Fluctuations ........ 565
        Rate Equation for Reynolds Stresses ................... 567
        Rate Equation for the Dissipation ..................... 569
        Physical Interpretation of the Terms .................. 569
        Analysis of the Pressure-Strain Correlation ........... 571
6.14    Averaged Equations for Compressible Flow .............. 573
        Equation of Turbulence Energy and the Reynolds
            Stresses .......................................... 577
        Dissipation Function .................................. 578
6.15    Turbulent Boundary Layer Equations .................... 580
        Equations in Rectangular Cartesian Coordinates ........ 580
        Two-Dimensional Equations ............................. 583
        Three-Dimensional Equations ........................... 583
        Equations in Orthogonal Curvilinear Coordinates ....... 585

        Part III: Basic Empirical and Boundary Layer Results
        in Turbulence ......................................... 586
6.16    The Closure Problem ................................... 586
6.17    Prandtl's Mixing-Length Hypothesis .................... 587
        Turbulent Flow Near a Wall ............................ 588
        Experimental Determination of uτ ...................... 592
        Application of the Logarithmic Formula in Pipe Flow ... 592
        Power Laws for the Velocity Distribution .............. 594
        Rough Pipes ........................................... 595
6.18    Wall-Bound Turbulent Flows ............................ 596
6.19    Analysis of Turbulent Boundary Layer Velocity
        Profiles .............................................. 605
        Law of the Wall for Compressible Flow ................. 612
6.20    Momentum Integral Methods in Boundary Layers .......... 613
        Method of Truckenbrodt ................................ 617
        Method of Head ........................................ 622
6.21    Differential Equation Methods in 2-D Boundary
        Layers ................................................ 624
        Zero-Equation Modeling in Boundary Layers ............. 626
        One-Equation Model of Glushko ......................... 628

        Part IV: Turbulence Modeling .......................... 630
6.22    Generalization of Boussinesq's Hypothesis ............. 630
        Specification of the Length Scale ..................... 632
6.23    Zero-Equation Modeling in Shear Layers ................ 633
        Thin Shear Layers ..................................... 634
6.24    One-Equation Modeling ................................. 635
        Choice of the Constants b1 b3 and b5 ................... 636
        Modifications Due to the Explicit Effects of
            Viscosity ......................................... 638
6.25    Two-Equation (K-Î) Modeling ........................... 641
        Modeling of the Dissipation Rate Equation ............. 641
        Modeling for Separated Flows .......................... 643
6.26    Reynolds' Stress Equation Modeling .................... 643
        Determination of the Constants c1 and c2 .............. 646
        Another Modeling of the Energy Equation ............... 648
        The Wall Boundary Conditions .......................... 649
6.27    Application to 2-D Thin Shear Layers .................. 650
6.28    Algebraic Reynolds' Stress Closure .................... 652
6.29    Development of A Nonlinear Constitutive Equation ...... 655
        Extension to Compressible Flow ........................ 657
            Turbulence Energy Equation ........................ 659
            Assumptions To Be Justified ....................... 661
        Implicit Algebraic Stress Model ....................... 661
        Explicit Algebraic Stress Model ....................... 662
            The Dissipation Equation .......................... 663
            The Total Energy Equation ......................... 664
            Modeling of the Correlations in the Total Energy
                Equation ...................................... 664
6.30    Current Approaches to Nonlinear Modeling .............. 665
6.31    Heuristic Modeling .................................... 669
6.32    Modeling for Compressible Flow ........................ 671
        Stokes' Law of Friction ............................... 671
        Complete Stress Tensor ................................ 672
        Heat Flux.............................................. 672
        Production of Turbulence Energy ....................... 673
        Model Equations ....................................... 674
        Justification of the Modeling Constants for
            Compressible Flow ................................. 675
6.33    Three-Dimensional Boundary Layers ..................... 676
        Eddy Viscosity Approach to 3-D Boundary Layers ........ 680
6.34    Illustrative Analysis of Instability .................. 682
        Reynolds-Orr Equation ................................. 682
        Choas and Lorenz Model ................................ 684
6.35    Basic Formulation of Large Eddy Simulation ............ 689
        Filters ............................................... 689
        Filtered Navier-Stokes Equations ...................... 693
        Linear Model .......................................... 697
        Scale-Similarity Model ................................ 698
        Dynamic Modeling ...................................... 699
        Algebraic Model ....................................... 701
        Nonlinear Constitutive Equation ....................... 702
References .................................................... 703
Problems ...................................................... 706

Mathematical Exposition 1  Base Vectors and Various
Representations ............................................... 721
1.1     Introduction .......................................... 721
1.2     Representations in Rectangular Cartesian Systems ...... 723
1.3     Scalars, Vectors, and Tensors ......................... 723
1.4     Differential Operations On Tensors .................... 725
        Gradient .............................................. 725
        Divergence ............................................ 726
        Curl .................................................. 727
1.5     Multiplication of A Tensor and A Vector ............... 727
1.6     Scalar Multiplication of Two Tensors .................. 728
1.7     A Collection of Usable Formulas ....................... 729
1.8     Taylor Expansion in Vector Form ....................... 731
1.9     Principal Axes of a Tensor ............................ 732
1.10    Transformation of T to the Principal Axes ............. 734
1.11    Quadratic Form and the Eigenvalue Problem ............. 735
1.12    Representation in Curvilinear Coordinates ............. 736
        Fundamental Metric Components ......................... 739
        Elemental Displacement Vector ......................... 741
        Differentiation of Base Vectors ....................... 742
        Gradient of a Vector .................................. 744
        Divergence and Curl of a Vector ....................... 745
        Divergence of Second-Order Tensors .................... 747
1.13    Christoffel Symbols in Three Dimensions ............... 748
        Christoffel Symbols of the First Kind ................. 748
        Christoffel Symbols of the Second Kind ................ 749
1.14    Some Derivative Relations ............................. 754
        Normal Derivative of Functions ........................ 755
        Physical Components in Curvilinear Coordinates ........ 756
1.15    Scalar and Double Dot Products of Two Tensors ......... 756

Mathematical Exposition 2  Theorems of Gauss, Green, and
Stokes ........................................................ 759
2.1     Gauss' Theorem ........................................ 759
2.2     Green's Theorem ....................................... 760
2.3     Stokes'Theorem ........................................ 760

Mathematical Exposition 3  Geometry of Space and Plane
Curves ........................................................ 763
3.1     Basic Theory of Curves ................................ 763
        Tangent Vector ........................................ 763
        Principal Normal ...................................... 764
        Binormal Vector ....................................... 765
        Serret-Frenet Equations ............................... 765
        Plane Curves .......................................... 766

Mathematical Exposition 4  Formulas for Coordinate
Transformation ................................................ 769
4.1     Introduction .......................................... 769
4.2     Transformation Law for Scalars ........................ 769
4.3     Transformation Laws for Vectors ....................... 770
4.4     Transformation Laws for Tensors ....................... 772
4.5     Transformation Laws for the Christoffel Symbols ....... 775
4.6     Some Formulas in Cartesian and Curvilinear
        Coordinates ........................................... 775
        Laplacian of an Absolute Scalar ....................... 776

Mathematical Exposition 5  Potential Theory ................... 779
5.1     Introduction .......................................... 779
5.2     Formulas of Green ..................................... 779
        Green's Formulas for Laplace Operator ................. 780
5.3     Potential Theory ...................................... 781
        Integral Representation ............................... 781
        The Delta Function .................................... 782
        Integral Representation of the Delta Function ......... 784
        The Delta Function in Higher Dimensions ............... 785
        Delta Function and the Fundamental Solution of the
            Laplace Equation .................................. 785
        The Dirichlet Problem for the Poisson Equation ........ 786
        Particular Solution of Poisson's Equation ............. 787
5.4     General Representation of a Vector .................... 787
5.5     An Application of Green's First Formula ............... 788

Mathematical Exposition 6  Singularities of the First-Order
ODEs .......................................................... 791
6.1     Introduction .......................................... 791
6.2     Singularities and Their Classification ................ 791

Mathematical Exposition 7  Geometry of Surfaces ............... 795
7.1     Basic Definitions ..................................... 795
7.2     Formulas of Gauss ..................................... 795
        Christoffel Symbols Based on Surface Coefficients ..... 796
7.3     Formulas of Weingarten ................................ 798
7.4     Equations of Gauss .................................... 799
7.5     Normal and Geodesic Curvatures ........................ 799
        Longitudinal and Transverse Curvatures ................ 802
7.6     Grid Generation in Surfaces ........................... 803

Mathematical Exposition 8  Finite Difference Approximation
Applied to PDEs ............................................... 805
8.1     Introduction .......................................... 805
8.2     Calculus of Finite Differences ........................ 805
        Methods of Interpolation .............................. 808
        Cubic Spline Functions ................................ 809
8.3     Iterative Root Finding ................................ 810
8.4     Numerical Integration ................................. 812
8.5     Finite Difference Approximations of Partial
        Derivatives ........................................... 813
        First Derivatives ..................................... 813
        Second Derivatives .................................... 814
8.6     Finite Difference Approximation of Parabolic PDEs ..... 814
        Stable Schemes for Parabolic Equations ................ 818
8.7     Finite Difference Approximation of Elliptic
        Equations ............................................. 819

Mathematical Exposition 9  Frame Invariancy ................... 825
9.1     Introduction .......................................... 825
9.2     Orthogonal Tensor ..................................... 825
        Time Differentiation .................................. 826
        Change of Basis ....................................... 827
9.3     Arbitrary Rectangular Frames of Reference ............. 828
9.4     Check for Frame Invariancy ............................ 829
9.5     Use of Q .............................................. 830
References for the Mathematical Expositions ................... 831
Index ......................................................... 833


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:48 2019. Размер: 42,804 bytes.
Посещение N 1718 c 26.04.2010