Preface ........................................................ xi
Author ....................................................... xiii
Acknowledgments ................................................ xv
Chapter 1 Concepts and Definitions ............................. 1
1.1 A Brief History of Thermodynamics ........................... 1
1.1.1 The Concept of Temperature ............................ 1
1.1.2 Heat and Work ......................................... 3
1.1.3 Carnol, Clausius, and the Second Law .................. 5
1.1.4 The First Law and Energy .............................. 7
1.1.5 Entropy and the Second Law of Thermodynamics .......... 8
1.1.6 Gibbs and Chemical Thermodynamics ..................... 9
1.1.7 Historical Summary ................................... 10
1.2 Thermodynamic Nomenclature ................................. 11
1.3 Heat and Work .............................................. 13
1.4 Characteristics of System Boundaries ....................... 14
1.5 Thermodynamic Processes .................................... 15
1.6 Thermodynamic Properties ................................... 16
1.6.1 Fundamental versus Auxiliary Properties .............. 16
1.6.2 Intensive versus Extensive Properties ................ 17
1.6.3 Derivative Properties ................................ 17
1.6.4 Absolute versus Relative Properties .................. 18
1.6.4.1 Pressure ................................... 18
1.6.4.2 Temperature ................................ 18
1.6.4.3 Volume ..................................... 18
1.6.4.4 Entropy .................................... 19
1.6.4.5 Internal Energy, Enthalpy, and Free
Energy ..................................... 19
1.7 Reversible and Irreversible Processes ..................... 20
1.7.1 Example: Compression of an Ideal Gas Using
Sliding Weights .................................... 21
1.7.1.1 Reversible Compression ..................... 22
1.7.1.2 Irreversible Compression ................... 23
1.8 The First Law of Thermodynamics ........................... 24
1.9 The Second Law of Thermodynamics .......................... 28
1.9.1 Example: The Direction of Heat Flow ................ 31
1.9.2 Example: Entropy Change Resulting from a Rapid
(Irreversible) Expansion of an Ideal Gas ........... 32
1.10 The Fundamental Differentials ............................. 34
1.10.1 Internal Energy .................................... 34
1.10.2 Enthalpy ........................................... 35
1.10.3 Helmhotz Free Energy ............................... 35
1.10.4 Gibbs Free Energy .................................. 35
1.10.5 Working Forms ...................................... 35
1.11 Equilibrium ............................................... 36
1.11.1 Internal Equilibrium ............................... 36
1.11.2 External Equilibrium ............................... 38
1.12 Components, Phases, and the Gibbs Phase Rule .............. 38
1.12.1 One-Component Systems .............................. 39
1.12.2 Two-Component Systems .............................. 39
1.12.3 Counting Components ................................ 40
1.12.4 Proof of the Phase Rule ............................ 41
Problems ....................................................... 42
References ..................................................... 47
Chapter 2 Equations of State .................................. 49
2.1 What Is an Equation of State? .............................. 49
2.2 The Ideal Gas Law .......................................... 49
2.3 Nonideal (Real) Gases ...................................... 51
2.3.1 The Compressibility Factor ........................... 52
2.3.2 The Van der Waals Equation of State .................. 53
2.3.3 The Virial Equation of State ......................... 55
2.4 Thermal Equations of State: The Specific Heat of Gases ..... 56
2.4.1 Specific Heats of Ideal Gases ........................ 56
2.4.2 Temperature Dependence of the Specific Heats ......... 57
2.5 Thermodynamic Properties of Solids and Liquids ............. 59
2.5.1 p-v-T Equation of State .............................. 59
2.5.2 Thermal Equations of State ........................... 62
2.6 Graphical Representations of the Equation of State of
Water ...................................................... 63
2.6.1 Thermodynamic Surfaces ............................... 63
2.6.2 Two-Dimensional Projections of the EOS Surface ....... 64
2.7 The Steam Tables ........................................... 67
2.7.1 Two-Phase Saturated Liquid-Saturated Vapor ........... 67
2.7.2 Single-Phase Superheated Vapor—Compressed Liquid ..... 70
2.7.3 Ice-Vapor ............................................ 74
Problems ....................................................... 75
References ..................................................... 81
Chapter 3 Application of the First and Second Laws to
Processes in Closed Systems ......................... 83
3.1 Scope ...................................................... 83
3.2 The Isochoric Process ...................................... 84
3.3 The Isothermal Process ..................................... 86
3.4 The Isobaric Process ....................................... 87
3.5 The Iscntropic Process ..................................... 89
3.5.1 Ideal Gases .......................................... 90
3.5.2 Water ................................................ 91
3.6 More Complicated Processes ................................. 92
3.7 Effect of Phase Changes on the Thermal Properties of
Condensed Phases ........................................... 95
3.7.1 Heat Capacities ...................................... 95
3.7.2 Enthalpy ............................................. 95
3.7.3 Entropy .............................................. 96
3.7.4 Free Energy of Phase Transitions ..................... 98
Problems ....................................................... 99
Chapter 4 Heal Engines, Power Cycles, and
the Thermodynamics of Open Systems ................. 109
4.1 Heat Engines .............................................. 109
4.1.1 Single Device, Sequential States, Ideal Gas ......... 110
4.1.2 Four Devices, Circulating Fluid, Water .............. 112
4.1.3 The First Law for Heat Engines ...................... 113
4.2 The Second Law Applied to Heat Engine Cycles .............. 113
4.3 The Carnot Cycle .......................................... 115
4.4 Thermodynamics of Open Systems ............................ 118
4.4.1 The First Law for Open (Flow) Systems ............... 118
4.4.2 The Second Law for Open Systems ..................... 121
4.4.3 Reversible Work of a Flow System .................... 122
4.5 Practical Power Cycles .................................... 122
4.5.1 The Rankine Cycle: A Steam Power Plant .............. 123
4.5.1.1 Cycle Efficiency ............................ 126
4.5.1.2 Use of the Second Law to Calculate
Efficiencies of Work-Producing and
Work-Consuming Devices ...................... 126
4.5.1.3 Total Entropy Increase ...................... 127
4.5.2 The Brayton Cycle: A Gas Turbine .................... 128
4.5.3 The Refrigeration Cycle (Heat Pump) ................. 130
4.6 Flow Devices without Shaft Work ........................... 131
4.6.1 Orifice or Valve .................................... 132
4.6.2 Nozzle .............................................. 133
4.7 Summary: Properties of Flow Devices ....................... 134
Problems ...................................................... 134
References .................................................... 140
Chapter 5 Phase Equilibria in One-Component Systems .......... 141
5.1 Introduction .............................................. 141
5.2 Equilibrium between Two Phases ............................ 142
5.3 The Clapyron Equation ..................................... 144
5.4 Vaporization (or Sublimation) ............................. 144
5.5 Psychrometry (Gas-Vapor Mixtures) ......................... 148
5.6 One-Component Phase Diagrams .............................. 151
5.7 The Effect of Pressure on Thermodynamic Properties ........ 152
5.7.1 Solid-Liquid (Melting) and Solid I-Solid II
Transformations ..................................... 152
5.7.2 Transformation of Graphite to Diamond ............... 153
5.7.3 Solid-Vapor and Liquid-Vapor: Vapor Pressures ....... 155
5.7.4 Triple Point (of Water) ............................. 156
5.7.5 Summary of Pressure Effects ......................... 158
Problems ...................................................... 159
Reference ..................................................... 164
Chapter 6 The Mathematics of Thermodynamics .................. 165
6.1 Mathematical Prelude ...................................... 165
6.1.1 Exact Differentials ................................. 165
6.1.2 The "Divide-and-Hold-Constant" Method ............... 167
6.2 Maxwell Relations and Other Useful Formulas ............... 168
6.3 Thermodynamic Relations for Nonideal Behavior ............. 170
6.3.1 Internal Energy and Enthalpy ........................ 170
6.3.2 Entropy ............................................. 172
6.3.3 Heat Capacities ..................................... 172
6.4 Nonideal Gases with Special Process Restraints ............ 175
6.4.1 Isentropie Process .................................. 176
6.4.2 Joule Expansion
(Constant Internal Energy Process) .................. 177
6.4.3 The Joule-Thompson Coefficient
(Constant Enthalpy Process) ......................... 179
Problems ...................................................... 180
Chapter 7 Gas Mixtures and Nonaqueous Solutions .............. 183
7.1 Mixtures and Solutions Defined; Measures of Composition ... 183
7.1.1 Mixtures versus Solutions ........................... 183
7.1.2 Composition ......................................... 183
7.2 Ideal Gas Mixtures ........................................ 184
7.2.1 Dalton's Rule ....................................... 185
7.2.2 Entropy of Mixing ................................... 186
7.3 Nonideal Liquid and Solid Solutions ....................... 190
7.3.1 Partial Molar Properties ............................ 191
7.3.2 Excess Properties ................................... 193
7.4 The Chemical Potential .................................... 194
7.5 Activity and Activity Coefficient ......................... 197
7.6 Excess Free Energy and the Entropy of Mixing .............. 199
7.7 Regular Solutions ......................................... 201
7.7.1 Excess Properties ................................... 201
7.7.2 Activity Coefficients ............................... 201
7.8 Chemical Potentials in Gas Mixtures ....................... 202
Problems ...................................................... 203
Reference ..................................................... 209
Chapter 8 Binary Phase Equilibria: Phase Diagrams ............ 211
8.1 Scope ..................................................... 211
8.2 Interphase Equilibrium .................................... 212
8.3 Distribution of Components between Phases ................. 213
8.3.1 Vapor-Liquid Equilibria ............................. 213
8.3.2 Raoult's Law ........................................ 214
8.3.3 Henry's Law ......................................... 215
8.3.4 Liquid-liquid Equilibrium ........................... 215
8.3.5 Gas Dissolution ..................................... 216
8.4 Binary Phase Diagrams—Analytical Construction ............. 217
8.4.1 Melting of Ideal Binary Condensed Phases ............ 217
8.4.2 Phase Separation .................................... 220
8.5 Binary Phase Diagrams by the Graphical Method ............. 221
8.5.1 Common Tangent Rule ................................. 222
8.5.2 Phase Separation in Regular Solutions ............... 223
8.5.2.1 Real Systems Exhibiting Phase Separation .... 225
8.5.3 Melting/Solidification of an Ideal Two-Component
System .............................................. 225
8.6 A Eutectic Phase Diagram .................................. 227
8.6.1 Free Energy-Composition Curves ...................... 228
8.6.2 The Phase Diagram ................................... 229
8.6.3 Heat Up Behavior .................................... 231
8.6.4 A Degenerate Eutectic System: Gold/Silicon .......... 231
8.6.4.1 "Proof" of the Zeroth Law ................... 233
8.6.5 A Complex Phase Diagram: Iron-Uranium ............... 234
8.6.6 Metal-Nonmetal: The Fe/O Phase Diagram .............. 235
8.6.7 Freezing Point Depression: Salt in Water ............ 237
8.7 The Lever Rule ............................................ 239
Problems ...................................................... 239
Reference ..................................................... 249
Chapter 9 Chemical Thermodynamics ............................ 251
9.1 Chemical Reactions ....................................... 251
9.1.1 Categories of Reactions: Stoichiomctry ............. 251
9.1.2 Equilibrium ........................................ 252
9.2 Enthalpy Change of a Reaction ............................ 254
9.3 Entropy Change of Reaction: The Entropy Rule of Thumb .... 256
9.4 Criterion of Chemical Equilibrium ........................ 258
9.5 Gas-Phase Reaction Equilibria ............................ 259
9.5.1 Effect of Pressure on Gas-Phase Chemical
Equilibria ......................................... 261
9.5.2 Effect of Temperature on Gas-Phase Chemical
Equilibria ......................................... 262
9.6 Solving for the Equilibrium Composition .................. 263
9.6.1 The Element-Conservation Method .................... 263
9.6.2 The Reaction Progress Variable Method .............. 264
9.7 Reactions in a Flowing Gas ............................... 265
9.8 Simultaneous Gas-Phase Reactions ......................... 266
9.9 Reactions between Gases and Pure Condensed Phases ........ 268
9.9.1 Implications of the Phase Rule ..................... 269
9.9.2 Stability Diagrams ................................. 269
9.9.3 Oxygen Isobars on a Phase Diagram .................. 270
9.9.4 Reactive Gas in Contact with a Reactive Metal ...... 271
9.10 Reactions Involving Solutions ............................ 274
9.10.1 Solution of a Reactant Species in an Inert
Solvent ........................................... 274
9.10.2 Reactions in Solution with Two Reactive Species ... 275
9.11 Thermochemical Databases ................................. 277
9.11.1 Standard Free Energy of Formation ................. 278
9.11.2 Graphical Representation: Ellingham Diagrams ...... 278
9.11.3 Analytic Representation ........................... 282
9.11.4 Tabular Representation ............................ 284
9.12 Dissolution of Gases in Metals ........................... 286
9.12.1 Dissociative Dissolution and Sieverts' Law ........ 287
9.12.2 The Zirconium-Hydrogen Phase Diagram .............. 288
9.13 Computational Thermodynamics ............................. 290
9.13.1 Method of Lagrange Multipliers .................... 291
9.13.2 Water Decomposition Example ....................... 291
Problems ...................................................... 294
Chapter 10 Electrochemistry .................................. 303
10.1 Electrochemistry Explained ............................... 303
10.2 The Solid-State Electrochemical Cell ..................... 304
10.2.1 Useful Electrochemical Cells ...................... 305
10.3 The Cell EMF and the Free Energy of the Overall
Reaction ................................................. 306
10.4 Nonstandard Solid-State Electrochemical Cells ............ 308
10.4.1 Half Cells with Solutions ......................... 309
10.4.2 Cells with Gaseous Electrodes ..................... 309
10.4.3 Fuel Cells ........................................ 310
10.5 Aqueous Electrochemistry ................................. 312
10.5.1 Cell Operational Modes ............................ 312
10.5.2 The Cell EMF and Chemical Potential of
the Overall Cell Reaction ......................... 313
10.5.3 Ion Standard Stale ................................ 315
10.5.4 Standard Electrode Potentials ..................... 317
10.5.5 Nemst Potential ................................... 319
10.6 Nonequilibrium Aqueous Electrochemical Cells ............. 320
10.6.1 Battery Operation (Galvanic Mode) ................. 320
10.6.2 Electrolysis ...................................... 321
10.6.3 Fuel Cell Mode .................................... 323
10.7 Equilibrium Constants of Aqueous Ionic Reactions ......... 323
10.7.1 Dissociation Constant of Water .................... 325
10.7.2 Solubility Products ............................... 326
10.8 Chemical Equilibria in Environmental Waters .............. 328
10.8.1 Species from Air .................................. 328
10.8.2 Ionic Equilibria of Pollutants .................... 329
10.9 Summary .................................................. 331
Problems ...................................................... 333
References .................................................... 337
Chapter 11 Biothermodynamics ................................. 339
11.1 Introduction ............................................. 339
11.2 Amino Acids .............................................. 339
11.3 Glucose .................................................. 341
11.4 Adenosine Triphosphate (ATP) ............................. 343
11.4.1 Synthesis ......................................... 343
11.4.2 Hydrolysis and Phosphorylation .................... 343
11.4.3 Regeneration of ATP by Oxidative
Phosphorylation ................................... 345
11.5 Protein Structures ....................................... 348
11.6 Ligand Binding to Macromolecules ......................... 351
11.6.1 Identical and Independent Binding Sites ........... 351
11.6.1.1 Scatehard's Equation ..................... 352
11.6.1.2 Site Occupancy ........................... 353
11.6.2 Dual Independent Binding Sites .................... 354
11.6.3 Cooperative Ligand Binding: Myoglobin to
Hemoglobin ........................................ 358
11.6.4 Competition for Sites - CO and O2 on Hemoglobin ... 360
11.7 Osmotic Pressure ......................................... 363
11.7.1 Osmometers ........................................ 365
11.7.2 Osmotic Second Virial Coefficient ................. 366
11.7.3 Osmosis in Electrolytes ........................... 368
11.7.4 Membrane Potential Difference ..................... 371
11.8 Separation of Proteins by Liquid-Liquid Extraction ....... 372
11.8.1 Formation of the Two Phases ....................... 373
11.8.1.1 Solution of the Phase-Equilibrium
Equations ................................ 375
11.8.2 The Effect of Electrolyte (Salt) Addition ......... 377
11.8.3 Protein Distribution .............................. 378
11.9 Calorimetry .............................................. 379
11.9.1 Bomb Calorimeter .................................. 379
11.9.2 Adiabatic Calorimetry ............................. 380
11.9.2.1 Titration Mode ........................... 380
11.9.2.2 Differential Scanning Mode ............... 382
Problems ...................................................... 384
References .................................................... 384
Index ......................................................... 385
|