Dorman L.I. Cosmic rays in the Earth's atmosphere and underground (Dordrecht, 2004). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаDorman L.I. Cosmic rays in the Earth's atmosphere and underground. - Dordrecht; London: Kluwer Academic, 2004. - 855 p. - ISBN 1402020716
 

Оглавление / Contents
 
Preface ....................................................... xxv

Acknowledgements ............................................. xxix

Frequently used Abbreviations and Notations .................. xxxi

PART 1. COSMIC RAYS AS AN OBJECT OF RESEARCH AND
        AS A RESEARCH INSTRUMENT ................................ 1

Preface to Part 1 ............................................... 2

Chapter 1.  Cosmic Rays as an Object of Research ................ 3
   1.1.  CR as an universal phenomenon in the Universe .......... 3
         1.1.1.  What are CR? Internal and external CR;
                 multiple origin of CR .......................... 3
         1.1.2.  Two maxima in particle energy distribution in
                 magnetized space plasma ........................ 3
         1.1.3.  The main cause of the CR phenomenon ............ 4
         1.1.4.  Formation of CR spectrum and upper energy
                 limit .......................................... 5
   1.2.  Main steps of CR discovery and research development .... 6
         1.2.1.  Air conductivity and CR discovery
                 (1900-1912) .................................... 6
         1.2.2.  Investigations  of the  origin of
                 'penetrating radiation';  establishment of
                 extraterrestrial origin of CR (1913—1926) ...... 6
         1.2.3.  Investigations of the nature of CR: charged
                 particles or gamma-rays? (1927-1939) ........... 6
         1.2.4.  Discovery in secondary CR positrons, muons,
                 pions, and other new elementary particles
                 (1932-1950) .................................... 8
         1.2.5.  Investigations of the sign of primary CR
                 charged particles (1933—1950) .................. 9
         1.2.6.  The first attempts to measure CR time
                 variations (1923—1935) ......................... 9
         1.2.7.  The 1st worldwide network of CR
                 observatories equipped by ionization
                 chambers; main results on CR variations
                 (1934 -1952) .................................. 10
         1.2.8.  Construction of neutron monitors and the
                 greatest GLE of February 23, 1956; the IGY
                 and the 2nd CR wide network (1952-1959) ....... 12
         1.2.9.  Construction of super NM, the IQSY and
                 the 3rd CR network, wide use satellites and
                 space probes for CR research (1960—1992) ...... 14
         1.2.10. Development of fundamental and applied CR
                 research: step by step formation of
                 International Cosmic Ray Service, wide use
                 of Internet for real time data exchange,
                 combining of ground and satellite CR data
                 (after 1992) .................................. 15
   1.3.  Main aspects of CR research and their
         interconnections ...................................... 18
         1.3.1.  The first aspect: CR underground and in the
                 atmosphere .................................... 18
         1.3.2.  The second aspect: CR in the magnetosphere
                 and in space .................................. 19
         1.3.3.  The third aspect: CR of solar, planetary,
                 and interplanetary origin ..................... 19
         1.3.4.  The forth aspect: CR astrophysics ............. 20
         1.3.5.  The fifth aspect: CR elementary particles
                 and high-energy physics ....................... 20
         1.3.6.  Interconnections between different aspects
                 of CR research ................................ 20
   1.4.  Primary CR: energy spectrum, chemical and isotopic
         contents, antimatter .................................. 21
         1.4.1.  Primary CR of extragalactic, galactic, and
                 solar origin .................................. 21
         1.4.2.  Energy spectrum and chemical composition of
                 galactic CR; main sources of CR in
                 the Galaxy .................................... 21
         1.4.3.  Protons and a-parlicles in primary
                 galactic CR ................................... 25
         1.4.4.  Isotopic contents of primary galactic CR ...... 28
         1.4.5.  Primary electrons and positrons in
                 galactic CR ................................... 31
         1.4.6.  Antimatter in galactic CR; the problem 
                 asymmetry in the Galaxy and the Universe ...... 33

Chapter 2.  Secondary CR Underground and in the Atmosphere ..... 39
   2.1.  CR interactions with air and ground atoms ............. 39
   2.2.  Meson-nuclear cascade and generation of pions ......... 39
   2.3.  Meson-nuclear and electromagnetic cascades in the
         atmosphere; Geant4 simulation Monte Carlo code ........ 40
   2.4.  Secondary CR underwater and underground ............... 43
         2.4.1.  Origin and nature of CR underwater and
                 underground ................................... 43
         2.4.2.  CR measurements underwater and underground .... 44
         2.4.3.  The CR intensity dependence on depth of
                 water and ground .............................. 44
         2.4.4.  Energy dependence ofmuon absorption path ...... 46
         2.4.5.  Angular distribution ofmuons underwater and
                 underground ................................... 47
   2.5.  Negative and positive muons in the atmosphere ......... 47
   2.6.  Secondary neutrino fluxes in the atmosphere and
         underground ........................................... 50
   2.7.  Underground measurements of solar and cosmic
         neutrinos ............................................. 52
         2.7.1.  Importance of solar and cosmic neutrinos
                 measurements for Astrophysics and
                 Elementary Particle Physics ................... 52
         2.7.2.  Solar neutrinos deficit and oscillations;
                 non zero neutrino mass ........................ 53
         2.7.3.  Possible anomalous magnetic moment and
                 spin-flavor neutrino precession ............... 54
         2.7.4.  Main results obtained in KamiokaNDE and
                 Super-KamiokaNDE; detection of solar,
                 atmospheric, and cosmic neutrinos from
                 Supernova; neutrino oscillations, the
                 problem of proton decay ....................... 59
   2.8.  Secondary neutrons and protons in the atmosphere ...... 61
   2.9.  Secondary gamma rays in the atmosphere from galactic
         and solar CR .......................................... 67
   2.10. Secondary gamma-rays from precipitating radiation
         belts electrons ....................................... 69
   2.11. Secondary electrons, positrons, and photons
         generated by CR in the atmosphere ..................... 71
   2.12. CR albedo radiation directed down and up .............. 75
   2.13. Secondary CR in the troposphere and stratosphere ...... 78
         2.13.1. Regular radio-balloon CR measurements and
                 comparison with ground measurements by NM
                 and MT ........................................ 78
         2.13.2.  Altitude and angular distributions of
                  secondary CR intensity at different cut-off
                  rigidities ................................... 79
         2.13.3.  Time variations of secondary CR intensity
                  at different depths in troposphere and
                  stratosphere ................................. 81
         2.13.4.  The atmospheric cut-off energy for radio-
                  balloon measurements vs. atmospheric depth ... 82
         2.13.5.  Precipitation of high-energy electrons from
                  the Earth's radiation belts .................. 83
         2.13.6.  Bremsstrahlung photons from precipitating
                  high-energy electrons ........................ 85
   2.14. Perspectives of secondary CR research development ..... 88

Chapter 3.  Coupling Functions, Integral Multiplicities, and
            Inverse Transformations ............................ 89
   3.1.  Integral multiplicities, coupling functions, and
         CR time variations .................................... 89
   3.2.  The interference between different CR variation
         classes ............................................... 91
   3.3.  CR in the geomagnetic field: asymptotic directions,
         penumbra and cut-off rigidities ....................... 91
   3.4.  Determination of coupling functions and integral
         multiplicities by geomagnetic effects; extrapolation
         to higher energies and estimations for underground
         detectors and EAS installations ....................... 93
         3.4.1.  Using geomagnetic effects for determining
                 coupling functions and integral
                 multiplicities ................................ 93
         3.4.2.  Extrapolation to higher energies or
                 rigidities .................................... 93
         3.4.3.  Coupling functions for underground CR
                 measurements .................................. 97
         3.4.4.  Coupling functions for EAS ................... 101
   3.5.  Analytical calculations of integral multiplicities
         and coupling functions for CR total neutron
         component ............................................ 107
         3.5.1.  Calculations of integral multiplicities and
                 coupling functions for neutron component
                 using the method of discontinue Markov
                 processes .................................... 107
         3.5.2.  Calculations of integral multiplicity,
                 coupling and response functions for total
                 neutron component by consideration of
                 hadronic cascade in the atmosphere ........... 112
   3.6.  Calculations of integral multiplicities and
         coupling functions for multiple neutrons in
         NM-IQSY .............................................. 119
   3.7.  Monte Carlo simulation of NM sensitivity (integral
         multiplicity) to primary protons arriving at
         different zenith angles .............................. 125
         3.7.1.  Calculations of integral multiplicity for
                 primary protons with energy 3 and 10 GeV ..... 125
         3.7.2.  Dependence of integral multiplicities on
                 atmospheric depth ............................ 126
         3.7.3.  Dependence of integral multiplicities on
                 the zenith angle ............................. 127
         3.7.4.  Dependence of integral multiplicities on
                 atmospheric depth and zenith angle ........... 128
         3.7.5.  Test of Dorman and Pakhomov (1979)
                 calculations of the integral multiplicities
                 by solar neutron observation data ............ 128
   3.8.  Analytical presentation of coupling functions ........ 129
         3.8.1.  The form of analytical approximation for
                 coupling functions ........................... 129
         3.8.2.  Analytical approximation for CR intensity
                 dependence on cut-off rigidity ............... 129
         3.8.3.  Analytical presentation of coupling
                 functions for NM-IQSY (total intensity
                 and different multiplicities); their
                 dependencies from solar activity ............. 130
         3.8.4.  Analytical representation of polar coupling
                 functions for different  CR secondary
                 components ................................... 131
   3.9.  Difference coupling functions for CR observations
         in the atmosphere and their analytical
         representation ....................................... 131
         3.9.1.  The problem of narrowing the energy
                 sensitivity of CR instruments ................ 131
         3.9.2.  The main equation for the difference
                 intensities for the two identical CR 
                 instruments at different cut-off
                 rigidities ................................... 131
         3.9.3.  Representation of the differential coupling
                 functions through polar coupling functions ... 133
         3.9.4.  Analytical approximation for the difference
                 coupling function ............................ 133
         3.9.5.  The difference coupling functions for
                 inclined muon telescopes ..................... 134
         3.9.6.  Main equation for determination of CR
                 variations of magnelospheric and
                 extraterrestrial origin using the
                 difference coupling functions for
                 observations in atmosphere ................... 135
   3.10. Difference coupling functions and difference
         meteorological coefficients for underground
         CR observations ...................................... 136
         3.10.1. The difference coupling functions for
                 underground observations by identical muon
                 telescopes relevant to the coupling
                 functions for single instruments ............. 136
         3.10.2. Difference coupling functions for
                 underground measurements on the same depth
                 but at different zenith angles ............... 138
         3.10.3. The difference meteorological coefficients
                 for pair of underground observations and
                 their relation to the meteorological
                 coefficients for single instruments .......... 139
         3.10.4. General equation of the variations for the
                 relative difference in the CR intensities
                 from underground observations ................ 140
   3.11. Spectrographic method for determining rigidity
         spectrum of primary CR variation on the basis of
         single observatory data .............................. 140
         3.11.1. Two approximations for rigidity spectrum
                 of primary CR variation ...................... 140
         3.11.2. Determination of the rigidity spectrum of
                 primary CR variation in the magnetically
                 quiet period ................................. 141
         3.11.3. Determination of the rigidity spectrum of
                 primary CR variation and cut-off rigidity
                 change in magnetically disturbed periods ..... 142
         3.11.4. Special program for on-line determination
                 of energy spectrum of CR primary variation ... 144
   3.12. Spectrographic method on the basis of two CR
         Observatories data ................................... 145
         3.12.1. Determination of the rigidity spectrum of
                 primary CR variation in the magnetically
                 quiet period ................................. 145
         3.12.2. Determination of the rigidity spectrum of
                 primary CR variation and cut-off rigidity
                 change in the magnetically disturbed
                 periods ...................................... 147
         3.12.3. Spectrographic method for pairs of CR
                 Observatories with about the same
                 asymptotic directions ........................ 149
   3.13. Ring CR Observatories with about the same
         asymptotic latitudes (method of variational
         coefficients) ........................................ 149
         3.13.1. The basis of the variational coefficients
                 method ....................................... 149
         3.13.2. Determination of the longitude variational
                 coefficients if the anisotropy follows a
                 cosine law in latitude ....................... 151
         3.13.3. Ways of using the longitude variational
                 coefficients in studying the anisotropy of
                 primary variations out of the
                 magnetosphere ................................ 153
         3.13.4. Limitations of the method of variational
                 coefficients ................................. 155
   3.14. Global-spectrographic method (acceptance vectors
         and spherical analyses) .............................. 156
         3.14.1. Representation of primary CR intensity
                 variation distribution function by
                 spherical harmonics .......................... 156
         3.14.2. The CR space distribution and the diurnal
                 variation .................................... 157
         3.14.3. Determination of acceptance vectors of
                 actual instruments ........................... 158
         3.14.4. Acceptance vectors for neutron monitors ...... 161
         3.14.5. Acceptance vectors for muon detectors ........ 173
         3.14.6. Transformation matrices ...................... 177
         3.14.7. Method for determining the momentary
                 anisotropy ................................... 180
   3.15. Experimental estimation of the ground detector's
         sensitivity to primary CR on the basis of data on
         observed CR variations ............................... 181
         3.15.1. On the using of experimental data on CR
                 variations for estimation of coupling
                 functions and integral multiplicities for
                 the detectors of secondary CR components ..... 181
         3.15.2. On the NM sensitivity to primary protons
                 below 3 GeV derived from GLE data ............ 185
         3.15.3. Using data on short and long term CR
                 modulation; NM sensitivity changes vs.
                 altitude and cutoff rigidity ................. 187
   3.16. Effective rigidity and effective energy as
         characteristics of secondary CR detector
         sensitivity to primary CR ............................ 191
         3.16.1. The effective rigidities and energies of CR
                 detectors and their dependence from cutoff
                 rigidity and primary CR spectrum of
                 variation .................................... 191
         3.16.2. Using the analytical approximation for
                 coupling functions ........................... 192
         3.16.3. Effective rigidities for muon detectors ...... 193
         3.16.4. Effective rigidities for total neutron
                 component .................................... 195
         3.16.5. The integral effective energies of CR
                 ground detectors for long-term CR
                 modulation in dependence from cutoff
                 rigidity ..................................... 197

Chapter 4.  Experimental Basis of Cosmic Ray Research ......... 201
   4.1.  Worldwide network of CR Observatories and
         CR database .......................................... 201
         4.1.1.  Worldwide network of CR detectors for
                 geophysical, astrophysical, and space
                 research applications ........................ 201
         4.1.2.  Archives of CR data and formation of CR
                 data database ................................ 201
   4.2.  The network of ionization chambers ................... 203
   4.3.  The network of muon telescopes ....................... 205
         4.3.1.  Zenith directional diagrams .................. 205
         4.3.2.  Using plastic scintillators for muon
                 telescopes ................................... 208
         4.3.3.  Design of muon telescopes with plastic
                 scintillators ................................ 210
         4.3.4.  Narrow angle multi directional telescopes .... 212
         4.3.5.  World-wide distribution of ground and
                 underground muon telescopes .................. 214
   4.4.  Network of neutron monitors of IGY type and neutron
         super-monitors of IQSY type .......................... 216
         4.4.1.  NM as main detector of worldwide network of
                 ground based CR observatories; the tendency
                 of combining NM and spacecraft data .......... 216
         4.4.2.  Examples of CR Observatories equipped
                 by NM ........................................ 217
         4.4.3.  Worldwide network of NM: planetary
                 distribution ................................. 218
         4.4.4.  Worldwide network of NM: statistical error ... 220
         4.4.5.  Response of NM worldwide network to CR
                 isotropic variation .......................... 220
         4.4.6.  Response of NM worldwide network to CR
                 North-South asymmetry and solar-
                 diurnalanisotropy ............................ 222
         4.4.7.  Sensitivity of NM worldwide network to
                 solar neutron events ......................... 224
         4.4.8.  Possible new sensors for neutrons
                 detecting .................................... 225
         4.4.9.  On neutron monitors zenith diagrams .......... 226
         4.4.10. Recording of multiple neutrons by NM-JGY
                 and NM-IQSY .................................. 227
         4.4.11. Sensitivity of NM to various secondary CR
                 particles .................................... 230
         4.4.12. Detection efficiency ofNM-lGY and NM-IQSY .... 232
         4.4.13. Comparison of detection efficiency of
                 NM-IQSY with different neutron counters ...... 235
         4.4.14. The high-latitude NM network as a basis
                 of the 'Spaceship Earth' concept ............. 237
         4.4.15. Intercalibration of the NM worldwide
                 network ...................................... 240
   4.5.  Equipments for investigation of very high
         energy CR ............................................ 242
         4.5.1. Initial EAS equipments and research ........... 242
         4.5.2. Recent and planned EAS experiments for CR
                research in extremely high energy range
                (MILAGRO experiment, OWL - A1RWATCH
                experiment, LA AS Network observations of
                Air Showers, Tibet-Ill Air Shower Array,
                TANGO Array I, Tunka EAS Cherenkov Array,
                Auger Observatories, Telescope Array
                Project, Underground Multimuon Experiment,
                The ASHRA Detector, KASCADE-Grande,
                Science-Education Experiment: Wide Area
                Small Air Showers Detection System Linked
                by Internet) .................................. 245
   4.6.  CR experiments on aircrafts and balloons ............. 254
         4.6.1.  The initial CR experiments on aircrafts ...... 254
         4.6.2.  Some example of recent aircraft CR
                 experiments .................................. 254
         4.6.3.  The network of regular radio-balloon CR
                 measurements ................................. 256
         4.6.4.  Special CR experiments on long duration
                 balloons (SOFCAL, HEAT, CAPRICE, AT1C,
                 TIGER, Polar BEAR, BESS, CREAM) .............. 256
   4.7.  CR research by geophysical rockets, on satellites
         and space-probes ..................................... 263
         4.7.1.  The initial CR instruments on geophysical
                 rockets ...................................... 263
         4.7.2.  Early space instruments for total flux
                 measurements of electrons, protons,
                 alpha-particles and gamma-rays ............... 263
         4.7.3.  Early space instruments for measurements of
                 nuclei flux lime variations .................. 264
         4.7.4.  Early space instruments for high energy CR
                 measurements ................................. 265
         4.7.5.  Recent space instruments for CR research
                 (SilEye - Silicon Detector on the MIR Space
                 Station, NINA, PAMELA, ACCESS, ECCO and
                 ENTICE on HNX Mission, HIT on TSUBASA, PS
                 on SELENE, AMS-02 on ISS, EUSU on ISS) ....... 265
   4.8.  An example of automatically operating CR
         Observatory connected to the Internet ................ 273
         4.8.1.  Israel Cosmic Ray Center and the Israeli-
                 Italian Emilio Segre' Observatory ............ 273
         4.8.2.  Description of underground multi-
                 directional muon telescope ................... 275
         4.8.3.  Automatic search of the start of great
                 flare energetic particle events .............. 278
         4.8.4.  The probability of false alarms .............. 280
         4.8.5.  The probability of missed triggers ........... 280
         4.8.6.  Website of ICRC/ESO in Internet and
                 automatic Alarms on the starting of big
                 solar CR events .............................. 281
   4.9.  Development of Solar Neutron Telescope (SNT) a
         special detector for search and investigations
         of solar neutron events .............................. 282
         4.9.1.  The first SNT and formation of the SNT
                 worldwide network ............................ 282
         4.9.2.  The largest SNT on Ml. Norikura (Japan) ...... 284
         4.9.3.  Calibrating of SNT ........................... 285
         4.9.4.  Extending of SNT network: foundation of new
                 SNT in Mexico ................................ 286
         4.9.5.  Developing of Super Solar Neutron Telescope
                 (SSNT) ....................................... 286

PART 2. INFLUENCE OF THE CHANGING ATMOSPHERE ON COSMIC RAYS
        (METEOROLOGICAL EFFECTS) .............................. 287

Preface to Part 2 ............................................. 288

Chapter 5.  Theory of Cosmic Ray Meteorological Effects for
            Measurements in the Atmosphere and Underground
           ( One-Dimensional Approximation) ................... 289
   5.1.  Meteorological effects of CR hard muon component ..... 289
         5.1.1.  Expectedpion intensity ....................... 289
         5.1.2.  Expected hard muon intensity ................. 290
         5.1.3.  Expected meteorological variations of muon
                 intensity .................................... 292
         5.1.4.  Expected meteorological effects of
                 different types .............................. 293
         5.1.5.  Meteorological coefficients for hard muons ... 295
         5.1.6.  Relative change of meteorological
                 coefficients for hard muons with changing
                 of observation conditions .................... 304
   5.2.  Meteorological effects of CR soft muons .............. 305
         5.2.1.  Expected intensity of soft muons ............. 305
         5.2.2.  Expected meteorological variations of CR
                 soft muons ................................... 306
         5.2.3.  Expected types of meteorological effects of
                 soft muons ................................... 307
         5.2.4.  Meteorological coefficients for soft muons ... 308
   5.3.  Meteorological effects of CR electron-photon, soft
         and general ionized components ....................... 311
         5.3.1.  CR general ionized, hard, soft and
                 electron-photon components: main
                 characteristics .............................. 311
         5.3.2.  Expected intensity of electronic component
                 from muons decay ............................. 312
         5.3.3.  Expected meteorological effects of
                 electronic component from muon decay ......... 313
         5.3.4.  Approximate solution for intensity and
                 meteorological effects of electronic
                 component from muons decay ................... 314
         5.3.5.  Expected intensity and meteorological
                 effects of δ—electrons ....................... 315
         5.3.6.  Expected meteorological effects of non-
                 equilibrium part of electron-photon
                 component .................................... 316
         5.3.7.  Expected intensity and meteorological
                 effects of electron-photon component ......... 317
         5.3.8.  Expected meteorological effects of CR
                 general ionized component .................... 318
   5.4.  Meteorological effects of CR total neutron
         component and different multiplicities ............... 319
         5.4.1.  Formation of total neutron component and
                 different multiplicities detected by
                 neutron monitors ............................. 319
         5.4.2.  Expected meteorological effects in total
                 neutron component and different
                 multiplicities caused by different
                 particles .................................... 321
         5.4.3.  Meteorological effects in total neutron
                 component and different multiplicities
                 caused by neutrons and protons: the first
                 approximation ................................ 321
         5.4.4.  Meteorological effects in total neutron
                 component and different multiplicities
                 caused by neutrons and protons: the second
                 approximation ................................ 322
         5.4.5.  Expected meteorological effects in total
                 neutron component and different
                 multiplicities caused by captured muons ...... 326
         5.4.6.  Expected meteorological effects in total
                 neutron component and different
                 multiplicities caused by fast muons .......... 327
         5.4.7.  Expected meteorological effects in total
                 neutron component and different
                 multiplicities caused by chargedpions
                 inside neutron monitor ....................... 327
         5.4.8.  Summary of temperature effects in total
                 neutron component ............................ 328

Chapter 6.  Experimental Investigations of Cosmic Ray Snow,
            Wind and Barometric Effects ....................... 331
   6.1.  CR snow effect ....................................... 331
         6.1.1.  CR snow effect on mountains and high-
                 latitude stations ............................ 331
         6.1.2.  Regression relations in periods without
                 snow ......................................... 331
         6.1.3.  Snow effect on Ml. Hermonfor different
                 multiplicities ............................... 332
         6.1.4.  Regression relations between snow effects
                 in total intensity and in different neutron
                 multiplicities ............................... 334
   6.2.  Wind effect in CR .................................... 336
   6.3.  Barometric effect of EAS ............................. 338
         6.3.1.  Results for EAS caused by primary CR 
                 energy from 100 TeV to 5000 TeV .............. 338
         6.3.2.  Barometric effect for a single CR component
                 of EAS ....................................... 338
   6.4.  Barometric and temperature effects of ionization
         bursts ............................................... 339
   6.5.  Barometric effect for underground observations
         of muon component .................................... 340
   6.6.  Barometric effect for hard muons ..................... 340
   6.7.  Barometric effect for general ionizing and soft
         cosmic ray components ................................ 341
   6.8.  Barometric effect for the total neutron component .... 342
         6.8.1.  Barometric coefficients for the first
                 non-standard detectors of neutrons ........... 342
         6.8.2.  Barometric coefficients for the standard
                 IGY type neutron monitors .................... 342
         6.8.3.  Comparison of barometric coefficients for
                 the standard IGY type (Simpson type)
                 neutron monitor and for IQSY type (NM-64)
                 super-monitor ................................ 343
   6.9.  Variation of barometric coefficients for the total
         neutron component with altitude and geomagnetic cut
         off rigidity ......................................... 343
         6.9.1.  The dependence of barometric coefficient
                 at sea level on Rc ........................... 343
         6.9.2.  The dependence of barometric coefficient on
                 Rc and average air pressure on the level of
                 observations ................................. 347
   6.10. Barometric coefficients for the total neutron
         component: airplane measurements ..................... 347
         6.10.1. Results for the average air pressure about
                 680 mb and 260-315 mb in dependence of cut
                 off rigidity near solar minimum .............. 347
         6.10.2. Dependences   β(h)  and  βν(h) for air
                 pressure interval 300-1030 mb at cut-off
                 rigidities 4.94 GV and 8.53 GVnear solar
                 maximum ...................................... 349
         6.10.3. Dependences β(h) and βν(h) vs. air pressure
                 in the interval 200-1030 mb at Rr. 1.6,
                 2.4; 5.7 and 13.3 GV near solar minimum and
                 solar maximum ................................ 350
   6.11. Dependence of barometric coefficient from h at
         different cut off rigidities and integral method of
         calculations of corrections on barometric effect ..... 352
   6.12. Influence of primary cosmic ray variations on
         barometric coefficients for neutron monitors ......... 353
         6.12.1. Influence of solar cosmic rays on
                 attenuation lengths and barometric
                 coefficients ................................. 353
         6.12.2. Influence of the 11-year solar activity
                 cycle on CR barometric coefficients .......... 356
         6.12.3. On the connection of barometric
                 coefficient variations with primary time
                 modulations of CR intensity .................. 359
   6.13. Various influences on barometric coefficients for
         neutron monitors ..................................... 360
         6.13.1. Influence of radioactive contaminations on
                 barometric coefficients for neutron
                 monitors ..................................... 360
         6.13.2. Influence of accidental coincidences and
                 generation of mesoatoms by captured soft
                 negative muons on barometric coefficients
                 for neutron monitors ......................... 361
   6.14. Barometric coefficients for counting rates of
         various neutron multiplicities ....................... 361
         6.14.1. Connection between barometric coefficients
                 for total neutron counting rate and for
                 multiplicities ............................... 361
         6.14.2. Results for neutron monitors of IGY type ..... 362
         6.14.3. Comparison of results for NM of IGY type
                 and stationary and shipboard NM of IQSY
                 type ......................................... 363
         6.14.4.  Dependence of β(%/mb) for various
                  multiplicities on Rc ........................ 364
         6.14.5.  Mean multiplicities for neutron monitor of
                  IGY type and stationary and shipboard
                  neutron monitors of IQSY type ............... 365
         6.14.6.  Analytical approximation for dependence of
                  barometric coefficient for total neutron
                  intensity and different neutron multi-
                  plicities from the level of observation ..... 367
   6.15. Determination of barometric coefficients by the
         method of consecutive approximations ................. 369
         6.15.1.  The method of consecutive approximations
                  for determination of barometric
                  coefficients ................................ 369
         6.15.2.  Barometric coefficients for Rome 17-NM-64
                  of IQSY type ................................ 369
         6.15.3.  Barometric coefficients for ESO NM-64
                  (Mt. Hermon): first approximation ........... 370
         6.15.4.  Barometric coefficients for ESO NM
                  (Mt. Hermon): second approximation .......... 371
         6.15.5.  Barometric coefficients for ESO NM
                  (Mt. Hermon): third approximation ........... 372
         6.15.6.  Comparison of the three approximations for
                  barometric coefficients ..................... 373

Chapter 7.  Experimental Investigations of Cosmic Ray
            Temperature and Humidity Effects .................. 375
   7.1.  Experimental investigations of temperature effect
         and the encountered difficulties ..................... 375
   7.2.  Integral method for determining of temperature
         effect for hard muon component ....................... 376
   7.3.  Experimental investigations of temperature effect
         of the hard muon component intensity underground ..... 380
   7.4.  Experimental investigations of the temperature and
         humidity effects in the neutron component ............ 380
         7.4.1.  Estimation of possible temperature effect
                 in neutron component by using of empirical
                 method of Duperier ........................... 380
         7.4.2.  The checking of the integral method of
                 estimation of temperature effect in
                 neutron component ............................ 381
         7.4.3.  The measurements of temperature 
                 humidity effects in neutron component ........ 381
   7.5.  Temporal and latitudinal dependencies of the
         temperature effect for cosmic ray neutron
         component ............................................ 383
         7.5.1.  The problem of separation of temperature
                 effect and North-South anisotropy in the
                 CR neutron component ......................... 383
         7.5.2.  The seasonal temperature effect and
                 North-South anisotropy in the CR neutron
                 component; determination of factor CT ........ 384

Chapter 8.  Atmospheric Electric Field Effects
            in Cosmic Rays .................................... 387
   8.1.  Discovery and detail investigations of atmospheric
         electric field effects in CR on the Baksan EAS
         array ................................................ 387
   8.2.  Possible explanations of the observed atmospheric
         electric field effects in CR ......................... 392
   8.3.  Observations on the top of Gran Sasso ................ 394
         8.3.1.  Observations with NaI(Tl) .................... 394
         8.3.2.  Observations with EASTOP ..................... 395
         8.3.3.  On the different nature of long and short
                 duration events: relative role of
                 radioactive aerosols and AEF ................. 396
   8.4.  Atmospheric electric field effects in charged CR
         components and in NM counting rate on Mt. Norikura ... 398
         8.4.1.  Particle acceleration in thunderstorms over
                 Mt. Norikura during 4-8 August 2000 .......... 398
         8.4.2.  On the monthly and daily distributions of
                 AEF effects in CR ............................ 399
         8.4.3.  AEF influence on CR at 17 July 2002: NM
                 and charged component data ................... 400
         8.4.4.  Possible causes of the difference of AEF
                 effects in CR in Baksan valley and on
                 Mt. Norikura ................................. 402
         8.4.5.  Monte Carlo simulations of expected AEF
                 effects in CR data on Mt. Norikura ........... 402
   8.5.  The general theory of atmospheric electric field
         effects in the CR secondary components ............... 404
   8.6.  The theory of atmospheric electric field effects in
         the hard muon component .............................. 404
         8.6.1.  Expected intensity of hard positive and
                 negative muons ............................... 404
         8.6.2.  Expected influence of atmospheric electric
                 field on intensity of hard positive and
                 negative muons ............................... 406
         8.6.3.  Expected influence of atmospheric electric
                 field on the total intensity of hard muons ... 407
         8.6.4.  Absorption contribution to the atmospheric
                 electric field effects in total hard muon
                 intensity .................................... 407
         8.6.5.  Decay contribution to the atmospheric
                 electric field effects in total hard muon
                 intensity .................................... 407
   8.7.  The theory of atmospheric electric field effects in
         soft muon intensity .................................. 408
         8.7.1.  General expression for expected intensity
                 of positive and negative soft muons in an
                 atmospheric electric field ................... 408
         8.7.2.  Expected variations of positive and
                 negative soft muon intensity in an
                 atmospheric electric field ................... 408
         8.7.3.  Absorption part of atmospheric electric
                 field influence on soft positive and
                 negative muon intensity ...................... 409
         8.7.4.  Decay part of atmospheric electric field
                 influence on soft positive and negative
                 muon intensity ............................... 410
   8.8.  Expected atmospheric electric field effects in
         neutron monitor total counting rate and in
         different multiplicities ............................. 410
         8.8.1.  Possible atmospheric electric field effects
                 in neutron monitor ........................... 410
         8.8.2.  Formation of lead mesoatoms in neutron
                 monitor by soft negative muons ............... 411
         8.8.3.  Dependence of lead mesoatoms formation in
                 neutron monitor on cut-off rigidity and
                 solar activity ............................... 412
         8.8.4.  Atmospheric electric field coefficients for
                 total neutron monitor counting rate and for
                 different multiplicities ..................... 413
         8.8.5.  AEF coefficients for NM on Mt. Herman ........ 414
   8.9.  First observations of atmospheric electric field
         effects in total neutron intensity and in different
         ultiplicities ........................................ 415
         8.9.1.  Simultaneous measurements of AEF effects in
                 total neutron intensity and different
                 multiplicities in the Emilio Segre'
                 Observatory on Mt. Herman .................... 415
         8.9.2.  Measurements of AEF on Mt. Herman;
                 characteristics of thunderstorm periods ...... 416
         8.9.3.  Data on electric field and cosmic ray
                 observations ................................. 419
         8.9.4.  Regression relations between atmospheric
                 electric field and counting rates of total
                 neutron intensity and different
                 multiplicities ............................... 419
         8.9.5.  Comparison of experimental results and
                 theoretical predictions of AEF effects in
                 NM total intensity and different
                 multiplicities ............................... 422

Chapter 9.  Development of the Theory and Methods of
            Determination of Cosmic Ray Variations of
            Atmospheric Origin ................................ 425
   9.1.  Determination of cosmic ray temperature effect by
         heights of isobaric levels ........................... 425
   9.2.  The first, second, and higher approximations in the
         integral method ...................................... 425
         9.2.1.  The general formula for the n-th
                 approximation for the integral method ........ 425
         9.2.2.  Commonly used first approximation far the
                 integral method .............................. 426
         9.2.3.  The second approximation for the integral
                 method ....................................... 427
         9.2.4.  The partial case of stable secondary
                 component or when ΔT(h,t) = 0 ................ 429
   9.3.  Calculations of barometric coefficients for
         different neutron multiplicities and total neutron
         intensity ............................................ 429
   9.4.  Calculations of barometric coefficients 
         frequency of external atmospheric showers ............ 432
   9.5.  Theory of hard muon meteorological accounting the
         muon generation spectrum at pions decay .............. 433
         9.5.1.  Muon generation spectrum at charged pions
                 decay ........................................ 433
         9.5.2.  Expected muon intensity at the level of
                 observation .................................. 434
         9.5.3.  Comparison of theory with observations for
                 muon energy spectrum,  zenith angle
                 distribution and altitude dependence of
                 intensity .................................... 437
         9.5.4.  Calculations of barometric coefficients for
                 ground and underground observations of
                 hard muons ................................... 441
         9.5.5.  Calculations of temperature coefficients
                 for ground and underground observations
                 of hard muons ................................ 444
   9.6.  Development of the theory of soft muon
         meteorological effects ............................... 452
         9.6.1.  Expected intensity and energy spectrum of
                 soft muons ................................... 452
         9.6.2.  Calculations of barometric coefficients for
                 soft muons ................................... 454
         9.6.3.  Calculations of temperature coefficients
                 for soft muons ............................... 456
         9.6.4.  Temperature coefficients for soft muons
                 with accounting the angle distribution at
                 pions decay, and Coulomb scattering .......... 458
   9.7.  Theory of super-high energy muons temperature
         effects .............................................. 464
         9.7.1.  Expected muon spectrum in super-high energy
                 region ....................................... 464
         9.7.2.  Expressions for temperature effect of
                 super-high energy muons ...................... 467
         9.7.3.  Calculations of temperature coefficients
                 for observations of super-high energy
                 muons ........................................ 468
   9.8.  Meteorological effects of integral multiplicities,
         partial coefficients, and interference of
         variations of different origin ....................... 471
         9.8.1.  General theory of meteorological effects
                 and classification of time variations ........ 471
         9.8.2.  Partial meteorological coefficients .......... 472
         9.8.3.  On the connection between partial and total
                 meteorological coefficients .................. 473
         9.8.4.  Theory of meteorological effects accounting
                 the interference of variations of different
                 origin ....................................... 474
   9.9.  CR meteorological coefficients for hard muons on
         the basis of 3-D model of meson-nuclear cascades
         in the atmosphere .................................... 475
         9.9.1.  Determination of integral multiplicity for
                 hard muons ................................... 475
         9.9.2.  Calculation of temperature effect of muon
                 integral multiplicity ........................ 477
   9.10. The method of partial barometric coefficient ......... 478
         9.10.1. Total and partial barometric coefficients .... 478
         9.10.2. Determination of partial barometric
                 coefficient by using data of total
                 barometric coefficient at different
                 cut-off rigidities ........................... 479
         9.10.3. Calculation of partial barometric
                 coefficient for total neutron component ...... 480

PART 3. COSMIC RAY INFLUENCE ON THE ATMOSPHERE 
        AND ATMOSPHERIC PROCESSES ............................. 483

Preface to Part 3 ............................................. 484

Chapter 10. Nuclear Reactions of Cosmic Rays with Ground,
            Water, and Air Atoms; Production of Cosmogenic
            Nuclides .......................................... 485
   10.1. Production of stable and unstable cosmogenic
         nuclides in space, in bodies, and in atmospheres ..... 485
   10.2. Cosmogenic nuclides and vertical mixing of elements
         in the Earth's atmosphere; local cosmogenic
         coupling functions ................................... 486
         10.2.1. The production rate of cosmogenic nuclides
                 in atmosphere, ground, and water ............. 486
         10.2.2. Calculations of cosmogenic nuclides
                 production rate as a function of altitude
                 and geomagnetic latitude ..................... 487
         10.2.3. The vertical mixing of elements and
                 integral cosmogenic multiplicity ............. 488
         10.2.4. Time-variations and local coupling
                 functions for production rate of cosmogenic
                 nuclides in the vertical column of the
                 atmosphere ................................... 489
         10.2.5. Expected changes of cosmogenic nuclides
                 integral production rates in different
                 latitudinal zones with variation of
                 modulation parameter ......................... 491
         10.2.6. Expected changes of cosmogenic nuclides
                 integral production rates  in different
                 latitudinal zones with possible variation
                 of the Earth's magnetic field ................ 492
         10.2.7. Expected cosmogenic nuclide contents in the
                 vertical column of the atmosphere and its
                 time-variations .............................. 494
   10.3. The planetary mixing in the atmosphere, variations
         in planetary cosmogenic nuclides production rate
         and planetary coupling functions ..................... 495
         10.3.1. Cosmogenic nuclides global production rate
                 at the planetary mixing in the atmosphere .... 495
         10.3.2. Time variation of planetary cosmogenic
                 .nuclides production rate .................... 496
   10.4. Two-reservoir model of elements exchange: the
         planetary contents of cosmogenic nuclides in the
         atmosphere and their time-variations ................. 497
         10.4.1. General solution ............................. 497
         10.4.2. Steady-state solution ........................ 498
         10.4.3. Expected time  variations  of planetary
                 cosmogenic  nuclides  contents from  local
                 supernova explosion .......................... 499
         10.4.4. The inverse problem: estimation of local
                 supernova explosion parameters by data on
                 planetary cosmogenic nuclides contents ....... 500
         10.4.5. Expected time  variations of planetary
                 cosmogenic nuclides contents from  cyclic
                 variations of production rate ................ 501
   10.5. Direct measurements of production rates of
         cosmogenic isotopes 10Be, 3He, and 3H ................ 502
   10.6. Peculiarities and main results regarding to 7Be ...... 503
         10.6.1. Importance of cosmogenic isotope 7Be
                 investigations for space and atmospheric
                 physics ...................................... 503
         10.6.2. Peculiarities of 7Be production in
                 atmosphere ................................... 504
         10.6.3. Long-term variation of the concentration
                 of 7Be in the atmosphere (on the basis of
                 yearly data) ................................. 506
         10.6.4. Seasonal variations of 7Be contents in
                 atmosphere ................................... 507
         10.6.5. Variation of 7Be contents with rotation
                 period of the Sun ............................ 508
         10.6.6. Effect of SEP events in 7Be contents ......... 510
   10.7. Peculiarities and main results regarding 10Be ........ 510
         10.7.1. Mean global 10Be production rate in
                 dependence of the solar activity level and
                 of geomagnetic field intensity ............... 510
         10.7.2. On the sensitivity of 10Be data to primary
                 CR modulation, to the change of geomagnetic
                 field, and to atmosphere mixing models ....... 511
         10.7.3. 11-year variation of 10Be concentration in
                 ice and the problem of 10Be planetary
                 mixing ....................................... 513
         10.7.4. Reflection of 22-year helio-magnetic cycles
                 in 10Be concentrations in ice ................ 515
         10.7.5. Geomagnetic field changes during
                 1000AD-2000AD, circumpo/ar atmosphere
                 motions, reflection in 10Be concentrations
                 in ice ....................................... 515
         10.7.6. Reflection in 10Be data long term
                 Heliospheric modulation in periods of low
                 and high solar activity ...................... 516
         10.7.7. Long term CR variations on the basis of
                 10Be data .................................... 517
         10.7.8. On the expected changes of 10Be contents
                 in polar ice caused by very great solar
                 particle events .............................. 519
         10.7.9. On the integral effective energy of primary
                 CR to which are sensitive 10Be and other
                 cosmogenic nuclides .......................... 519

Chapter 11. Cosmic Ray Influence on Atmospheric Electric
            Field and Thunderstorms, Earth's Global Charge
            and Global Electric Current ....................... 521
   11.1. On two mechanisms of CR connection with
         thunderstorm discharges .............................. 521
   11.2. Necessary conditions for atmospheric electric field
         discharges in the atmosphere ......................... 521
   11.3. Measurements of atmospheric electric field, critical
         electric field, lightnings, and sprites .............. 524
   11.4. External Atmospheric Showers (EAS) generated by
         high energy CR particles and thunderstorm
         discharges ........................................... 529
         11.4.1. EAS and inter-cloud discharges ............... 529
         11.4.2. EAS discharge mechanism and descending
                 lightning (from cloud to ground) ............. 532
         11.4.3. EAS discharge mechanism and ascending
                 (ground-to-cloud) lightnings ................. 534
         11.4.4. Application of EAS discharge mechanism to
                 explanations of red sprites and blue jets .... 534
         11.4.5. EAS discharge mechanism and thundercloud
                 activity over oceans ......................... 536
   11.5. On the connection between CR intensity and
         discharged atmospheric electric current .............. 536
   11.6. On the connection between CR intensity and
         frequency of thunderstorm discharges; charged
         electric current ..................................... 538
   11.7. On the CR role in the equilibrium between charged
         and discharged global atmospheric electric currents,
         and in the supporting the stability of the Earth's
         Charge ............................................... 540

Chapter 12. Air Ionization by CR, Influence on the
            Ionosphere and Radio Wave Propagation ............. 541
   12.1. Observed disturbances in the ionosphere and
         interruptions in radio wave communications during
         great GLE of February 23, 1956 ....................... 541
   12.2. Expected ionization rate and radio-wave absorption
         for different SEP energy spectrums ................... 543
   12.3. Riometer measurements of polar absorptions as
         method of low energy solar CR monitoring ............. 545
   12.4. Galactic and solar CR influence on the low
         ionosphere: analytical approach ...................... 546
         12.4.1. Comparison of different ionizing agents ...... 546
         12.4.2. Analytical approach for protons .............. 546
         12.4.3. Analytical approach for nuclei with
                 charge Z ..................................... 549
   12.5. Expected ionization rates during GLE in October
         1989, July 2000, and April 2001 ...................... 552
         12.5.1. Differential proton fluxes in the range
                 15-850 MeV during three GLE .................. 552
         12.5.2. Expected ionization rates during three GLE ... 554
   12.6. The inverse problem: possible using of ionospheric
         measurements for estimation of galactic and solar
         CR variations ........................................ 556
         12.6.1. How to use ionospheric data for galactic
                 and solar CR research? ....................... 556
         12.6.2. General expression for ionization rale
                 profiles owed to CR of galactic and solar
                 origin; ion production multiplicity .......... 556
         12.6.3. Temporal  variations of the ionization rate
                 (RC,h) and determination of the ionospheric
                 coupling coefficients for the nuclei Z ....... 557
         12.6.4. The total local and polar ionospheric
                 coupling coefficients ........................ 558
         12.6.5. The case of a constant chemical composition
                 of CR ........................................ 559
         12.6.6. The set of the ionospheric spectrographs
                 equations for continuous observations at
                 several levels above a single point .......... 559
         12.6.7. The set of spectrograph's equations for
                 continuous observations of ionization rates
                 above two points at two levels ............... 561
   12.7. Altitude distribution of ionization in the
         troposphere and stratosphere owed by galactic
         CR and ion balance equation .......................... 561
   12.8. Spatial and temporal changes of the ionization in
         the low atmosphere induced by galactic CR ............ 565
         12.8.1. Importance of investigations induced by
                 galactic CR ionization in the low
                 atmosphere ................................... 565
         12.8.2. The scheme of the step by step calculations
                 of air ionization in the low atmosphere
                 induced by galactic CR ....................... 565
         12.8.3. The expected 3-D distribution air
                 ionization in the low atmosphere and long
                 term variations induced by galactic CR ....... 570

Chapter 13. Cosmic Ray Influence on the Chemical Processes
            in the Atmosphere and Formation of Ozone Layer .... 573
   13.1. CR influence on the chemistry in the mesosphere ...... 573
   13.2. Nitrate abundances in Antarctic and Greenland snow
         and ice columns: information on FEP events in the
         past ................................................. 575
   13.3. Cumulative probabilities of the FEP events vs.
         their fluencies for > 30 MeV solar protons on the
         basis of nitrate abundances in Antarctic and
         Greenland ice columns, satellite data and
         cosmogenic isotopes in moon rocks .................... 576
   13.4. On the seasonal dependency of great FEP occurrence
         according to nitrate data in arctic polar ice ........ 577
   13.5. On the possible connection of nitrate enhancements
         with geomagnetic storms and auroras .................. 578
   13.6. Nitrate signals on the long term CR variations
         in the 415 year ice core record ...................... 579
   13.7. CR influence on stratospheric chemistry .............. 581
   13.8. Long-term galactic CR influence on the ozone layer ... 582
   13.9. On the possible relationship of atmospheric ozone
         dynamics with global auroral activity, CR Forbush
         effects, and IMF clouds .............................. 583
   13.10. Short-term solar CR influence on the ozone layer .... 586
          13.10.1. Discovery and modeling ofGLE influence on
                   the ozone layer ............................ 586
          13.10.2. GLE in August 1972 ......................... 586
          13.10.3. GLE in July 2000 ........................... 588
          13.10.4. GLE in April 2001 .......................... 590
          13.11. Peculiarities of GLE influence on chemistry
                 and ozone layer in the upper stratosphere
                 and lower mesosphere ......................... 590

Chapter 14. Cosmic Ray Influence on Planetary Cloud-Covering
            and Long-Term Climate Change ...................... 591
   14.1. Short historical review .............................. 591
   14.2. On the connection of CR solar cycle variation with
         variation of planetary cloud coverage ................ 593
   14.3. On the possible influence of long-term CR variation
         on long-term changing of planetary surface
         temperature .......................................... 596
   14.4. CR influence on weather during Maunder minimum ....... 597
   14.5. Possible influence of solar activity/cosmic ray
         intensity long term variations on wheat prices
         (through weather changes) in medieval England ........ 598
   14.6. On the connection between integral rate of ion
         generation in the atmosphere by CR and total
         surface of clouds .................................... 601
   14.7. CR influence on precipitation in periods of big
         magnetic storms (Forbush - decreases) and solar
         CR events ............................................ 602
   14.8. On the possible influence of geomagnetic
         disturbances and solar activity on the rainfall
         level through energetic particle precipitation
         from the inner radiation belt ........................ 603
         14.8.1. On the possible influence on climate
                 parameters particle precipitation from
                 inner radiation belt ......................... 603
         14.8.2. Comparison ofKp-index with rainfall level
                 on the daily data basis ...................... 604
         14.8.3. On the connection of the long term
                 variations of annual rainfalls with
                 variations of solar and geomagnetic
                 activity ..................................... 605
         14.8.4. On the difference of galactic and solar CR
                 influence on climate parameters at middle
                 and low latitudes ............................ 607
   14.9. On the possible influence of galactic CR on
         formation of cirrus hole and global warming .......... 607
   14.10.On the possible influence of long-term variation
         of main geomagnetic field on global climate change
         through CR cutoff rigidity variation ................. 609
         14.10.1.Expected CR intensity variation owed to
                 cutoff rigidity change ....................... 609
         14.10.2.Long-term variation of cut-off rigidity
                 planetary distribution during 1600-2000 ...... 610
         14.10.3.On the long-term change of cutoff
                 rigidities and expected change of
                 CR intensity owed to geomagnetic
                 field variation .............................. 613
         14.10.4.The global cutoff rigidities and their
                 change during the last 2000 years ............ 615
   14.11.Cosmic rays and the current trend of the global
         warming .............................................. 618
   14.12.The Project CLOUD as an important step in
         understanding of the links CR-cloud formation-
         climate change ....................................... 621
   14.13.Possible CR paths in atmosphere forming
         intermediate links between variable Sun
         and the Earth's climate change ....................... 622
   14.14.On the possible role of CR in long-term climate
         and landscape change (e.g., Netherlands) ............. 623

PART 4. APPLICATIONS OF COSMIC RAY RESEARCH ................... 625

Preface to Part 4 ............................................. 626

Chapter 15. The Possible Application of the Inverse Problem:
            Determination of Atmospheric Conditions by
            Cosmic Ray Data ................................... 627
   15.1. Determination of air temperature variations in
         upper atmosphere by data on underground muon
         component variations ................................. 627
   15.2. Determination of vertical distribution of air
         temperature by simultaneous measurements of several
         CR secondary components .............................. 628
   15.3. The use of spectrographic method to exclude
         geomagnetic and extraterrestrial variations .......... 630
   15.4. Determination of altitudinal air temperature
         profile using CR data and ground temperature ......... 632
   15.5. The general spectrographic method and inverse
         problem .............................................. 633
         15.5.1. The case of detection of three stable and
                 one or several unstable cosmic ray
                 components at a single point ................. 633
         15.5.2. The case when all components are unstable;
                 passive location of the variations in the
                 vertical distribution of the atmospheric
                 temperature .................................. 635
   15.6. The continuous passive sounding of the variations
         in the vertical distribution of the atmospheric
         temperature and the air column mass over the
         observation level by means of CR ..................... 638

Chapter 16. Meteorological Effects Application to Cosmic
            Ray Latitude Survey Data Processing ............... 643
   16.1. Cosmic ray latitude surveys and meteorological
         effects .............................................. 643
   16.2. The Bernoulli effect on measurements of atmospheric
         mass for latitude surveys ............................ 645
   16.3. Nature and evaluation of sea-state effect on the NM
         counting rate ........................................ 647
   16.4. Determination of atmospheric absorption, Bernoulli
         and sea-state effects in Antarctic region ............ 649
         16.4.1. Conditions for multi-correlation analysis .... 649
         16.4.2. Multi-correlation analysis for NM data ....... 650
         16.4.3. Sea-state, Bernoulli and atmospheric
                 absorption effects for NM detector ........... 651
         16.4.4. Sea-state, Bernoulli and atmospheric
                 absorption effects for BC detector ........... 654
         16.4.5. Summary of the results on the determination
                 of Bernoulli, sea-state and atmospheric
                 absorption effects for NM and BC detectors ... 656
   16.5. The atmospheric absorption effect as a function of
         cut-off rigidity ..................................... 657
         16.5.1. Remarks on the atmospheric absorption
                 effect of NM and BC .......................... 657
         16.5.2. Analytical approximation of atmospheric
                 absorption coefficient vs. cut-off
                 rigidity ..................................... 659
   16.6. Corrections for temperature effect vs. time and
         cut-off rigidity ..................................... 660
         16.6.1. Temperature coefficient for neutron monitor
                 vs. cut-off rigidity ......................... 660
         16.6.2. Sea-level and vertical air temperature
                 distributions vs. cut-off rigidity ........... 662
         16.6.3. Temperature corrections ofNM-64 counting
                 rate vs. cut-off rigidity .................... 664
         16.6.4. On the temperature effect in the counting
                 rate of bare neutron counters ................ 666
   16.7. Correction of survey data for primary variations
         and all meteorological effects ....................... 666
         16.7.1. Correction of survey data for primary
                 variations ................................... 666
         16.7.2. Determination of vertical atmospheric mass
                 corrected for wind effect .................... 666
         16.7.3. Correction for sea-state effect .............. 666
         16.7.4. Correction for atmospheric absorption
                 effect ....................................... 668
         16.7.5. Corrections for temperature effect ........... 668
   16.8. Application of CR meteorological effects to
         latitude survey research: summary and conclusions .... 668

Chapter 17. Applications of the Radiocarbon Coupling
            Function Method to Investigations of
            Planetary Mixing and Exchange Processes;
            Influence of H-Bomb Explosions on the
            Environment; Cosmic Ray Variations in the Past .... 671
   17.1. Cosmogenic nuclides and radiocarbon method for CR
         variations, for geophysical and astrophysical
         research ............................................. 671
   17.2. Radiocarbon production rate vs of latitude,
         altitude, and level of solar activity; vertical
         mixing in the atmosphere and local coupling
         functions for radiocarbon ............................ 672
         17.2.1. Production rate of radiocarbon in the
                 Earth's atmosphere as a function of
                 atmospheric depth and geomagnetic
                 latitude ..................................... 672
         17.2.2. Vertical mixing of elements in the Earth's
                 atmosphere, radiocarbon production rate in
                 total vertical column ........................ 676
         17.2.3. Radiocarbon production rate in vertical
                 column of the atmosphere and its time
                 variations ................................... 677
         17.2.4. Calculations of local and polar radiocarbon
                 coupling functions;analytical approximation
                 for coupling functions ....................... 678
         17.2.5. Expected variation of radiocarbon coupling
                 functions during solar activity cycle ........ 680
   17.3. Planetary mixing in the atmosphere and the
         planetary coupling function for radiocarbon;
         analytical approximation and change with solar
         activity ............................................. 682
         17.3.1. Planetary mixing of elements in the Earth's
                 atmosphere and planetary radiocarbon
                 production rate .............................. 682
         17.3.2. Time variations of planetary production
                 rate and planetary radiocarbon coupling
                 functions .................................... 684
         17.3.3. Planetary radiocarbon magnetic and
                 barometric coefficients ...................... 685
         17.3.4. On the influence of the planetary mixing
                 of elements on the time variation of
                 radiocarbon production rate .................. 686
         17.3.5. Situation in the case of giant solar flare
                 event or local supernova explosion ........... 687
   17.4. Radiocarbon contents and planetary elements
         exchange in the frame of 2-reservoir model ........... 688
         17.4.1. Radiocarbon contents in dated samples ........ 688
         17.4.2. Non-stationary solution for radiocarbon
                 contents in the frame of 2-reservoir
                 model of elements exchange on the Earth
                 at any initial condition ..................... 688
         17.4.3. Solution for the total contents of
                 radiocarbon on the Earth ..................... 689
         17.4.4. Steady-state solution for radiocarbon
                 contents in both reservoirs on the Earth;
                 relation between probabilities of elements
                 exchange ..................................... 690
         17.4.5. Non-stationary solution at initial
                 condition of stationary contents ............. 691
   17.5. H-bombs explosions, generation of radiocarbon, and
         estimation of parameters of the elements exchange
         model; influence on global environment ............... 691
         17.5.1. The reflection in radiocarbon production
                 rate of H-bomb explosions taking into
                 account vertical and planetary mixing ........ 691
         17.5.2. The H-bomb explosions effect in radiocarbon
                 contents taking into account elements
                 exchange between planetary reservoirs ........ 692
         17.5.3. Application to  USSR and USA H-bombs
                 explosions in  1962; estimation of total
                 radiocarbon production ....................... 693
         17.5.4. H-bomb explosions and parameters of 2-
                 reservoir model of planetary exchange of
                 elements on the Earth ........................ 694
         17.5.5. Expected time variation of radiocarbon
                 contents in atmosphere and in ocean owing
                 to H-bomb explosions ......................... 694
   17.6. The reflection of cosmic ray cyclic modulation in
         radiocarbon contents in the frame of 2-reservoir
         model of elements planetary exchange on the Earth .... 695
         17.6.1. General solution for the planetary)
                 reservoir A .................................. 695
         17.6.2. Very long-term and very short-term cyclic
                 modulation of radiocarbon content in the
                 atmosphere ................................... 696
         17.6.3. The amplitude reducing and time lag in
                 cyclic variation of radiocarbon content in
                 the atmosphere as a function of CR
                 modulation frequency ......................... 697
         17.6.4. Reflection of CR cyclic modulation in
                 radiocarbon contents in the reservoir F ...... 697
   17.7. The reflection of CR burst from local supernova
         explosion in radiocarbon contents in the frame of
         2-reservoir model of elements exchange ............... 698
   17.8. Radiocarbon contents in dated samples and planetary
         elements exchange in the frame of 5-reservoir
         model ................................................ 699
         17.8.1. The basic equations for 5-reservoir model .... 699
         17.8.2. The solution for the total radiocarbon
                 content on the Earth ......................... 700
         17.8.3. The steady-state solution for the
                 5-reservoir model and estimation of the
                 probabilities of the planetary exchange
                 of elements .................................. 701
         17.8.4. Non-stationary solution for the radiocarbon
                 5-reservoir model ............................ 703
   17.9. A short review on the research of CR variations and
         related phenomena in the past by radiocarbon
         method ............................................... 705
         17.9.1. Radiocarbon data ............................. 705
         17.9.2. The radiocarbon method and CR variations
                 in the past, caused by long-time variations
                 of geomagnetic field ......................... 705
         17.9.3. The radiocarbon method and grand solar
                 activity minima .............................. 707
         17.9.4. The radiocarbon method and solar activity
                 cycles ....................................... 710
         17.9.5. Radiocarbon and 10Be data related to
                 possible local supernova explosions
                 in the past .................................. 717
   17.10.Summary and perspectives of radiocarbon method ....... 718

Chapter 18. Potential and Realized Applications of Cosmic
            Ray Research in Science and Technology ............ 721
   18.1. Possible CR applications in Meteorology and in
         Service of great airports ............................ 721
         18.1.1. The matter of the problem .................... 721
         18.1.2. Generalized spectrograph method and using
                 CR data of different CR components ........... 721
   18.2. Possible CR applications in Hydrology and
         Agriculture .......................................... 723
         18.2.1. Using small CR detectors for automatic
                 continuous measurements of snow mass in
                 vertical column over detector and
                 determining of total snow mass reserve
                 in river basins (for Hydrology) and on
                 the fields (for Agriculture) ................. 723
         18.2.2. Possible CR applications for Agriculture:
                 using neutron counters for automatically
                 continue measurements of water contents
                 in soil by albedo neutrons generated
                 underground by CR ............................ 723
         18.2.3. Possible using of underwater CR detectors
                 for automatically continuously measurements
                 of level of river, lake, sea, ocean .......... 724
         18.2.4. Possible use of underground muon telescopes
                 for automatic monitoring of the condition
                 of different types of weirs .................. 724
   18.3. Possible CR applications in research of atmospheric
         electric field phenomenon ............................ 724
   18.4. CR applications in Geology and Geophysical
         Prospecting .......................................... 725
         18.4.1. Peculiarities of secondary CR transport
                 through the ground ........................... 725
         18.4.2. Use of multi-directional muon telescopes
                 inside tunnels, caves, streaks in mines ...... 726
         18.4.3. Possible use of special neutron monitor for
                 underground searches ......................... 729
         18.4.4. Use of special NM without lead for quick
                 determination of the quality of ore .......... 730
         18.4.5. Use of special NM without lead for search
                 in old mines or in acting mines .............. 731
   18.5. CR applications in Environmental Science ............. 731
         18.5.1. Using cosmogenic isotope data for
                 estimation parameters of planetary mixing
                 and exchange of chemical elements ............ 731
         18.5.2. CR applications for treating pollution of
                 the Earth atmosphere, water, snow, and
                 soils ........................................ 732
   18.6. CR applications in Archeology ........................ 734
         18.6.1. Using multidirectional muon telescope
                 inside pyramids or other historical
                 objects for search for some peculiarities
                 in the structure ............................. 734
         18.6.2. The well known improvement of the
                 radiocarbon method for the dating of
                 important historical samples ................. 734
         18.6.3. Possible use of special neutron monitor
                 without lead for searching some historical
                 samples in soil .............................. 734
   18.7. Possible Forensic applications ....................... 734
         18.7.1. Using radiocarbon method for dating of
                 samples important for criminal
                 investigations ............................... 734
         18.7.2. Use of special neutron monitor without lead
                 in forensic science .......................... 736
         18.7.3. Possible application of special neutron
                 monitor without lead for searching
                 cemeteries ................................... 736
   18.8. Possible CR applications for Navigation .............. 736
   18.9. CR data applications for the Physics of the Earth's
         magnetosphere ........................................ 737
         18.9.1. Use of CR spectrographic method for
                 continuous determination of magnetosphere
                 equatorial ring current's properties ......... 737
         18.9.2. Using CR latitude surveys data for testing
                 magnetosphere models ......................... 738
   18.10.CR data application for the Physics of Heliosphere ... 738
   18.11.CR research and climate change: possible
         applications ......................................... 738
   18.12.CR research applications for space weather
         monitoring and forecasting ........................... 739
   18.13.Application of regular CR measurements by radio
         balloons for environment monitoring of radioactive
         clouds from nuclear explosions or nuclear plant
         failures ............................................. 741
   18.14.Possible application of CR research to the problem
         of great earthquakes forecasting ..................... 743
         18.14.1.CR research on extraterrestrial causes of
                 great earthquakes: neutron bursts from
                 the Earth's crust at new and full Moon ....... 743
         18.14.2.CR research on extraterrestrial causes of
                 great earthquakes: crossing of the neutral
                 current sheet of IMF by the Earth and CR
                 daily variations ............................. 746
         18.14.3.CR research on internal causes of great
                 earthquakes .................................. 748
   18.15.Experience in the research of CR in the Earth's
         atmosphere and underground: applications to CR
         interactions with the Sun, planets, and other
         solar system bodies .................................. 750
   18.16.CR research applications to Human Health and
         Medicine, to the Problem of Car and Train
         Accidents ............................................ 751
         18.16.1.Short historical review ...................... 751
         18.16.2.Frequency of myocardial infarcts, brain
                 strokes, and car accident road traumas
                 in connection with CR Forbush-decreases ...... 751
         18.16.3.In what days of CR Forbush decrease there
                 is sufficient influence on people health
                 and car road accidents? ...................... 753
         18.16.4.The train accidents in connection with CR
                 Forbush decreases ............................ 754
         18.16.5.The problem of the long-term variations of
                 the train accident frequency in comparison
                 with solar activity and CR intensity
                 variations ................................... 755
         18.16.6.Long-term variations of the myocardial
                 infarctions, brain strokes, and train
                 accident frequency in connection with
                 sunspot number, CR intensity, tilt angle
                 and number of geomagnetic storms ............. 757
         18.16.7.Discussion of obtained results and possible
                 causes of the human diseases connection
                 with CR intensity and other space weather
                 parameters ................................... 758
   18.17.Application of CR research to the problem of
         satellite malfunctions ............................... 760
         18.17.1.Importance of the problem .................... 760
         18.17.2.Data cleaning and formation of database ...... 760
         18.17.3.Situations in October 1989 and April-May
                 1991 as examples of very high frequency of
                 satellite malfunctions ....................... 761
         18.17.4.Comparison of malfunctions in high
                 (> 1000 km) and low (< 1000 km) altitude
                 satellites ................................... 762
         18.17.5.Peculiarities of 'Kosmos' satellite
                 malfunctions ................................. 763
         18.17.6.Seasonal variations of the number of
                 satellite malfunctions ....................... 764
         18.17.7.Clusterization of satellite malfunctions ..... 765
         18.17.8.On the connection of satellite malfunctions
                 with Cosmic Ray Activity index; possible
                 using of this index for forecasting .......... 766
         18.17.9.Influence of proton and electron fluxes on
                 the satellite malfunction frequency in
                 dependence of the type of satellite orbit;
                 CR effects and peculiarities for
                 forecasting .................................. 766

Conclusion and Problems ....................................... 771

References .................................................... 775

Object Index .................................................. 835

Author Index .................................................. 841


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:44 2019. Размер: 93,048 bytes.
Посещение N 2321 c 26.04.2010