Bommarius A.S. Biocatalysis: fundamentals and applications / Bommarius A.S., Riebel B.R. (Weinheim; Cambridge, 2004). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаBommarius A.S. Biocatalysis: fundamentals and applications / Bommarius A.S., Riebel B.R. - Weinheim; Cambridge: Wiley-VCH, 2004. - 300 p. - ISBN 3-527-30344-8
 

Место хранения: 054 | Международный томографический центр CO РАН | Новосибирск

Оглавление / Contents
 
Preface ......................................................... V
Acknowledgments ............................................... VII

1.  Introduction to Biocatalysis ................................ 1
    1.1.  OverviewrThe Status of Biocatalysis at the Turn of the
          21st Century .......................................... 1
          1.1.1. State of Acceptance of Biocatalysis ............ 2
          1.1.2. Current Advantages and Drawbacks of
                 Biocatalysis ................................... 4
                 1.1.2.1. Advantages of Biocatalysts ............ 4
                 1.1.2.2. Drawbacks of Current Biocatalysts ..... 5
    1.2.  Characteristics of Biocatalysis as a Technology ....... 6
          1.2.1. Contributing Disciplines and Areas of
                 Application .................................... 6
          1.2.2. Characteristics of Biocatalitic
                 Transformations ................................ 7
                 1.2.2.1. Comparison of Biocatalysis with other
                          Kinds of Catalysis .................... 8
          1.2.3. Applications of Biocatalysis in Industry ....... 9
                 1.2.3.1. Chemical Industry of the Future:
                          Environmentally Benign Manufacturing,
                          Green Chemistry, Sustainable
                          Development in the Future ............. 9
                 1.2.3.2. Enantiomerically Pure Drugs or
                          Advanced Pharmaceutical Intermediates
                          (APIs) ............................... 10
    1.3.  Current Penetration of Biocatalysis .................. 11
          1.3.1. The Past: Historical Digest of Enzyme
                 Catalysis ..................................... 11
          1.3.2. The Present: Status of Biocatalytic
                 Processes ..................................... 11
    1.4.  The Breadth of Biocatalysis .......................... 14
          1.4.1. Nomenclature of Enzymes ....................... 14
          1.4.2. Biocatalysis and Organic Chemistry, or "Do
                 we Need to Forget our Organic Chemistry?" ..... 14

2.  Characterization of a (Bio-)catalyst ....................... 19
    2.1.  Characterization of Enzyme Catalysis ................. 20
          2.1.1. Basis of the Activity of Enzymes: What is
                 Enzyme Catalysis? ............................. 20
                 2.1.1.1. Enzyme Reaction in a Reaction
                          Coordinate Diagram ................... 21
          2.1.2. Development of Enzyme Kinetics from Binding
                 and Catalysis ................................. 21
    2.2.  Sources and Reasons for the Activity of Enzymes as
          Catalysts ............................................ 23
          2.2.1. Chronology of the Most Important Theories of
                 Enzyme Activity ............................... 23
          2.2.2. Origin of Enzymatic Activity: Derivation of
                 the Kurz Equation ............................. 24
          2.2.3. Consequences of the Kurz Equation ............. 25
          2.2.4. Efficiency of Enzyme Catalysis: Beyond
                 Pauling's Postulate ........................... 28
    2.3.  Performance Criteria for Catalysts, Processes, and
          Process Routes ....................................... 30
          2.3.1. Basic Performance Criteria for a Catalyst:
                 Activity, Selectivity and Stability of
                 Enzymes ....................................... 30
                 2.3.1.1. Activity ............................. 30
                 2.3.1.2. Selectivity .......................... 31
                 2.3.1.3. Stability ............................ 32
          2.3.2. Performance Criteria for the Process .......... 33
                 2.3.2.1. Product Yield ........................ 33
                 2.3.2.2. (Bio)catalyst Productivity ........... 34
                 2.3.2.3. (Bio)catalyst Stability .............. 34
                 2.3.2.4. Reactor Productivity ................. 35
          2.3.3. Links between Enzyme Reaction Performance
                 Parameters .................................... 36
                 2.3.3.1. Rate Acceleration .................... 36
                 2.3.3.2. Ratio between Catalytic Constant
                          kcat and Deactivation Rate Constant
                          kd.................................... 38
                2.3.3.3. Relationship between Deactivation
                         Rate Constant fcd and Total Turnover
                         Number TTN ............................ 38
          2.3.4. Performance Criteria for Process Schemes,
                 Atom Economy, and Environmental Quotient ...... 39

3.  Isolation and Preparation of Microorganisms ................ 43
    3.1.  Introduction ......................................... 44
    3.2.  Screening of New Enzyme Activities ................... 46
          3.2.1. Growth Rates in Nature ........................ 47
          3.2.2. Methods in Microbial Ecology .................. 47
    3.3.  Strain Development ................................... 48
          3.3.1. Range of Industrial Products from
                 Microorganisms ................................ 48
          3.3.2. Strain Improvement ............................ 50
    3.4.  Extremophiles ........................................ 52
          3.4.1. Extremophiles in Industry ..................... 54
    3.5.  Rapid Screening of Biocatalysts ...................... 56

4.  Molecular Biology Tools for Biocatalysis ................... 61
    4.1.  Molecular Biology Basics: DNA versus Protein Level ... 62
    4.2.  DNA Isolation and Purification ....................... 65
          4.2.1. Quantification of DNA/RNA ..................... 66
    4.3.  Gene Isolation, Detection, and Verification .......... 67
          4.3.1. Polymerase Chain Reaction...................... 67
          4.3.2. Optimization of a PCR Reaction ................ 69
          4.3.3. Special PCR Techniques ........................ 71
                 4.3.3.1. Nested PCR ........................... 71
                 4.3.3.2. Inverse PCR .......................... 71
                 4.3.3.3. RACE: Rapid Amplification of cDNA
                          Ends ................................. 71
          4.3.4. Southern Blotting ............................. 74
                 4.3.4.1. Probe Design and Labeling ............ 76
                 4.3.4.2. Hybridization ........................ 76
                 4.3.4.3. Detection ............................ 76
          4.3.5. DNA-Sequencing ................................ 77
    4.4.  Cloning Techniques ................................... 77
          4.4.1. Restriction Mapping ........................... 78
          4.4.2. Vectors ....................................... 78
          4.4.3. Ligation ...................................... 80
                 4.4.3.1. Propagation of Plasmids and
                          Transformation in Hosts .............. 81
    4.5.  (Over)expression of an Enzyme Function in a Host ..... 81
          4.5.1. Choice of an Expression System ................ 81
          4.5.2. Translation and Codon Usage in E. coli ........ 82
          4.5.3. Choice of Vector .............................. 84
                 4.5.3.1. Generation of Inclusion Bodies ....... 85
                 4.5.3.2. Expression of Fusion Proteins ........ 85
                 4.5.3.3. Surface Expression ................... 87
          4.5.4. Expression of Eukaryotic Genes in Yeasts ...... 87

5.  Enzyme Reaction Engineering ................................ 91
    5.1.  Kinetic Modeling: Rationale and Purpose .............. 92
    5.2.  The Ideal World: Ideal Kinetics and Ideal Reactors ... 94
          5.2.1. The Classic Case: Michaelis-Menten Equation ... 94
          5.2.2. Design of Ideal Reactors ...................... 96
          5.2.3. Integrated Michaelis-Menten Equation in
                 Ideal Reactors ................................ 96
                 5.2.3.1. Case 1: No Inhibition ................ 97
    5.3.  Enzymes with Unfavorable Binding: Inhibition ......... 97
          5.3.1. Types of Inhibitors ........................... 97
          5.3.2. Integrated Michaelis-Menten Equation for
                 Substrate and Product Inhibition .............. 99
                 5.3.2.1. Case 2: Integrated Michaelis-Menten
                          Equation in the Presence of
                          Substrate Inhibitor .................. 99
                 5.3.2.2. Case 3: Integrated Michaelis-Menten
                          Equation in the Presence of
                          Inhibitor ............................ 99
                 5.3.3. The KI —[I]50 Relationship: Another
                        Useful Application of Mechanism
                        Elucidation ........................... 103
    5.4.  Reactor Engineering ................................. 105
          5.4.1. Configuration of Enzyme Reactors ............. 105
                 5.4.1.1. Characteristic Dimensionless
                          Numbers for Reactor Design .......... 107
          5.4.2. Immobilized Enzyme Reactor (Fixed-Bed
                 Reactor with Plug-Flow) ...................... 108
                 5.4.2.1. Reactor Design Equations ............ 108
                 5.4.2.2. Immobilization ...................... 109
                 5.4.2.3. Optimal Conditions for an
                          Immobilized Enzyme Reactor .......... 110
          5.4.3. Enzyme Membrane Reactor (Continuous Stirred
                 Tank Reactor, CSTR)........................... 110
                 5.4.3.1. Design Equation: Reactor Equation
                          and Retention ....................... 110
                 5.4.3.2. Classification of Enzyme Membrane
                          Reactors ............................ 111
          5.4.4. Rules for Choice of Reaction Parameters and
                 Reactors ..................................... 113
    5.5.  Enzyme Reactions with Incomplete Mass Transfer:
          Influence of Immobilization ......................... 113
          5.5.1. External Diffusion (Film Diffusion) .......... 114
          5.5.2. Internal Diffusion (Pore Diffusion) .......... 114
          5.5.3. Methods of Testing for Mass Transfer
                 Limitations .................................. 116
          5.5.4. Influence of Mass Transfer on the Reaction
                 Parameters ................................... 118
    5.6.  Enzymes with Incomplete Stability: Deactivation
          Kinetics ............................................ 119
          5.6.1. Resting Stability ............................ 119
          5.6.2. Operational Stability ........................ 120
          5.6.3. Comparison of Resting and Operational
                 Stability .................................... 122
          5.6.4. Strategy for the Addition of Fresh Enzyme
                 to Deactiving Enzyme in Continuous
                 Reactors ..................................... 124
    5.7.  Enzymes with Incomplete Selectivity: E-Value and
          its Optimization .................................... 126
          5.7.1. Derivation of the E-Value .................... 126
          5.7.2. Optimization of Separation of Racemates by
                 Choice of Degree of Conversion ............... 128
                 5.7.2.1. Optimization of an Irreversible
                          Reaction ............................ 128
                 5.7.2.2. Enantioselectivity of an
                          Equilibrium Reaction ................ 129
                 5.7.2.3. Determination of Enantiomeric
                          Purity from a Conversion-Time
                          Plot ................................ 130
          5.7.3. Optimization of Enantiomeric Ratio E by
                 Choice of Temperature ........................ 130
                 5.7.3.1. Derivation of the Isoinversion
                          Temperature ......................... 130
                 5.7.3.2. Example of Optimization of
                          Enantioselectivity by Choice of
                          Temperature ......................... 131
 
6.  Applications of Enzymes as Bulk Actives: Detergents,
    Textiles, Pulp and Paper, Animal Feed ..................... 135
    6.1.  Application of Enzymes in Laundry Detergents ........ 136
          6.1.1. Overview ..................................... 136
          6.1.2. Proteases against Blood and Egg Stains ....... 138
          6.1.3. Lipases against Grease Stains ................ 139
          6.1.4. Amylases against Grass and Starch Dirt ....... 139
          6.1.5 Cellulases .................................... 139
          6.1.6. Bleach Enzymes ............................... 140
    6.2.  Enzymes in the Textile Industry: Stone-washed
          Denims, Shiny Cotton Surfaces ....................... 140
          6.2.1. Build-up and Mode of Action of Enzymes for
                 the Textile Industry ......................... 140
          6.2.2. Cellulases: the Shinier Look ................. 141
          6.2.3. Stonewashing: Biostoning of Denim: the Worn
                 Look ......................................... 143
          6.2.4. Peroxidases .................................. 144
    6.3.  Enzymes in the Pulp and Paper Industry: Bleaching
          of Pulp with Xylanases or Laccases .................. 145
          6.3.1. Introduction ................................. 145
          6.3.2. Wood ......................................... 146
                 6.3.2.1. Cellulose ........................... 146
                 6.3.2.2. Hemicellulose ....................... 147
                 6.3.2.3. Lignin .............................. 147
          6.3.3. Papermaking: Kraft Pulping Process ........... 149
          6.3.4. Research on Enzymes in the Pulp and Paper
                 Industry ..................................... 150
                 6.3.4.1. Laccases ............................ 150
                 6.3.4.2. Xylanases ........................... 151
                 6.3.4.3. Cellulases in the Papermaking
                          Process ............................. 152
    6.4.  Phytase for Animal Feed: Utilization of
          Phosphorus .......................................... 152
          6.4.1. The Farm Animal Business and the
                 Environment .................................. 152
          6.4.2. Phytase ...................................... 153
          6.4.3. Efficacy of Phytase: Reduction of
                 Phosphorus ................................... 154
          6.4.4. Efficacy of Phytase: Effect on Other
                 Nutrients .................................... 155
 
7.  Application of Enzymes as Catalysts: Basic Chemicals,
    Fine Chemicals, Food, Crop Protection, Bulk
    Pharmaceuticals ........................................... 159
    7.1.  Enzymes as Catalysts in Processes towards
          Basic Chemicals ..................................... 160
          7.1.1. Nitrile Hydratase: Acrylamide from
                 Acrylonitrile, Nicotinamide from
                 3-Cyanopyridine, and 5-Cyanovaleramide from
                 Adiponitrile ................................. 160
                 7.1.1.1. Acrylamide from Acrylonitrile ....... 160
                 7.1.1.2. Nicotinamide from 3-Cyanopyridine ... 162
                 7.1.1.3. 5-Cyanovaleramide from
                          Adiponitrile ........................ 162

          7.1.2. Nitrilase: l,5-Dimethyl-2-piperidone from
                 2-Methylglutaronitrile ....................... 163
          7.1.3. Toluene Dioxygenase: Indigo or
                 Prostaglandins from Substituted Benzenes
                 via cis-Dihydrodiols ......................... 163
          7.1.4. Oxynitrilase (Hydroxy Nitrile Lyase, HNL):
                 Cyanohydrins from Aldehydes .................. 167
    7.2.  Enzymes as Catalysts in the Fine Chemicals
          Industry ............................................ 170
          7.2.1. Chirality, and the Cahn-Ingold-Prelog and
                 Pfeiffer Rules ............................... 170
          7.2.2. Enantiomerically Pure Amino Acids ............ 172
                 7.2.2.1. The Aminoacylase Process ............ 172
                 7.2.2.2. The Amidase Process ................. 174
                 7.2.2.3. The Hydantoinase/Carbamoylase
                          Process ............................. 174
                 7.2.2.4. Reductive Amination of Keto Acids
                          (L-tert-Leucine as Example) ......... 177
                 7.2.2.5. Aspartase ........................... 180
                 7.2.2.6. L-Aspartate-p-decarboxylase ......... 180
                 7.2.2.7. L-2-Aminobutyric acid ............... 181
          7.2.3. Enantiomerically Pure Hydroxy Acids,
                 Alcohols, and Amines ......................... 182
                 7.2.3.1. Fumarase ............................ 182
                 7.2.3.2. Enantiomerically Pure Amines with
                          Lipase .............................. 182
                 7.2.3.3. Synthesis of Enantiomerically Pure
                          Amines through Transamination ....... 183
                 7.2.3.4. Hydroxy esters with carbonyl
                          reductases .......................... 185
                 7.2.3.5. Alcohols with ADH ................... 186
    7.3.  Enzymes as Catalysts in the Food Industry ........... 187
          7.3.1. HFCS with Glucose Isomerase (GI) ............. 187
          7.3.2. AspartameO, Artificial Sweetener through
                 Enzymatic Peptide Synthesis .................. 188
          7.3.3. Lactose Hydrolysis ........................... 191
          7.3.4. "Nutraceuticals": L-Carnitine as a Nutrient
                 for Athletes and Convalescents (Lonza) ....... 191
          7.3.5. Decarboxylases for Improving the Taste of
                 Beer ......................................... 194
    7.4.  Enzymes as Catalysts towards Crop Protection
          Chemicals ........................................... 195
          7.4.1. Intermediate for Herbicides: (R)-2-(4-       
                 Hydroxyphenoxypropionic acid
                 (BASF, Germany) .............................. 195
          7.4.2. Applications of Transaminases towards Crop
                 Protection Agents: L-Phosphinothricin and
                 (S)-MOIPA .................................... 196
    7.5.  Enzymes for Large-Scale Pharma Intermediates ........ 197
          7.5.1. Penicillin G (or V) Amidase (PGA, PVA):
                 β-Lactam Precursors, Semi-synthetic
                 β-Lactams ............................... 197
          7.5.2. Ephedrine .................................... 200

8.  Biotechnological Processing Steps for Enzyme
    Manufacture ............................................... 209
    8.1.  Introduction to Protein Isolation and
          Purification ........................................ 210
    8.2.  Basics of Fermentation .............................. 212
          8.2.1. Medium Requirements .......................... 213
                 8.2.2. Sterilization ......................... 214
                 8.2.3. Phases of a Fermentation .............. 214
                 8.2.4. Modeling of a Fermentation ............ 215
                 8.2.5. Growth Models ......................... 216
                 8.2.6. Fed-Batch Culture ..................... 216
    8.3.  Fermentation and its Main Challenge: Transfer of
          Oxygen .............................................. 218
          8.3.1. Determination of Required Oxygen Demand of
                 the Cells .................................... 218
          8.3.2. Calculation of Oxygen Transport in the
                 Fermenter Solution ........................... 219
          8.3.3. Determination of kL, a, and kLa .............. 220
                 8.3.2.1. Methods of Measurement of the
                          Product kLa ......................... 221
    8.4.  Downstream Processing: Crude Purification of
          Proteins ............................................ 223
          8.4.1. Separation (Centrifugation) .................. 223
          8.4.2. Homogenization ............................... 225
          8.4.3. Precipitation ................................ 226
                 8.4.3.1. Precipitation in Water-Miscible
                          Organic Solvents .................... 228
                 8.4.3.2. Building Quantitative Models for
                          the Hofmeister Series and Cohn-
                          Edsall and Setschenow Equations ..... 228
          8.4.4. Aqueous Two-Phase Extraction ................. 229
    8.5.  Downstream Processing: Concentration and
          Purification of Proteins ............................ 231
          8.5.1. Dialysis (Ultrafiltration) (adapted in part
                 from Blanch, 1997) ........................... 231
          8.5.2. Chromatography ............................... 233
                 8.5.2.1. Theory of Chromatography ............ 233
                 8.5.2.2. Different Types of Chromatography ... 235
          8.5.3. Drying: Spray Drying, Lyophilization,
                 Stabilization for Storage .................... 236
    8.6.  Examples of Biocatalyst Purification ................ 237
          8.6.1. Example 1: Alcohol Dehydrogenase
                 [(R)-ADH from L. brevis (Riebel, 1997)] ...... 237
          8.6.2. Example 2: L-Amino Acid Oxidase from
                 Rhodococcus opacus (Geueke 2002a,b) .......... 238
          8.6.3. Example 3: Xylose Isomerase from
                 Thermoanaerobium Strain JW/SL-YS 489 ......... 240

9.  Methods for the Investigation of Proteins ................. 243
    9.1.  Relevance of Enzyme Mechanism ....................... 244
    9.2.  Experimental Methods for the Investigation of an
          Enzyme Mechanism .................................... 245

          9.2.1. Distribution of Products (Curtin-Hammett
                 Principle) ................................... 245
          9.2.2. Stationary Methods of Enzyme Kinetics ........ 246
          9.2.3. Linear Free Enthalpy Relationships (LFERs):
                 Brensted and Hammett Effects ................. 248
          9.2.4. Kinetic Isotope Effects ...................... 249
          9.2.5. Non-stationary Methods of Enzyme Kinetics:
                 Titration of Active Sites .................... 249
                 9.2.5.1. Determination of Concentration of
                          Active Sites ........................ 249
          9.2.6. Utility of the Elucidation of Mechanism:
                 Transition-State Analog Inhibitors ........... 251
    9.3.  Methods of Enzyme Determination ..................... 253
          9.3.1. Quantification of Protein .................... 253
          9.3.2. Isoelectric Point Determination .............. 254
          9.3.3. Molecular Mass Determination of Protein
                 Monomer: SDS-PAGE ............................ 254
          9.3.4. Mass of an Oligomeric Protein: Size
                 Exclusion Chromatography (SEC) ............... 256
          9.3.5. Mass Determination: Mass Spectrometry (MS)
                 (after Kellner, Lottspeich, Meyer) ........... 257
          9.3.6. Determination of Amino Acid Sequence by
                 Tryptic Degradation, or Acid, Chemical or
                 Enzymatic Digestion .......................... 258
    9.4.  Enzymatic Mechanisms: General Acid-Base Catalysis ... 258
          9.4.1. Carbonic Anhydrase II ........................ 258
          9.4.2. Vanadium Haloperoxidase ...................... 260
    9.5.  Nucleophilic Catalysis .............................. 261
          9.5.1. Serine Proteases ............................. 261
          9.5.2. Cysteine in Nucleophilic Attack .............. 265
          9.5.3. Lipase, Another Catalytic Triad Mechanism .... 266
          9.5.4. Metalloproteases ............................. 268
    9.6.  Electrophilic catalysis ............................. 269
          9.6.1. Utilization of Metal Ions: ADH, a Different
                 Catalytic Triad .............................. 269
                 9.6.1.1. Catalytic Mechanism of Horse Liver
                          Alcohol Dehydrogenase, a
                          Medium-Chain Dehydrogenase .......... 269
                 9.6.1.2. Catalytic Reaction Mechanism of
                          Drosophila ADH, a Short-Chain
                          Dehydrogenase ....................... 271
          9.6.2. Formation of a Schiff Base, Part I:
                 Acetoacetate Decarboxylase, Aldolase ......... 274
          9.6.3. Formation of a Schiff Base with Pyridoxal
                 Phosphate (PLP): Alanine Racemase, Amino
                 Acid Transferase ............................. 275
          9.6.4. Utilization of Thiamine Pyrophosphate
                 (TPP): Transketolase ......................... 277

10. Protein Engineering ....................................... 281
    10.1. Introduction: Elements of Protein Engineering ....... 282
    10.2. Methods of Protein Engineering ...................... 283
          10.2.1.Fusion PCR ................................... 284
          10.2.2.Kunkel Method ................................ 285
          10.2.3.Site-Specific Mutagenesis Using the
                 QuikChange Kit from Stratagene ............... 287
          10.2.4.Combined Chain Reaction (CCR) ................ 288
    10.3. Glucose (Xylose) Isomerase (GI) and Glycoamylase:
          Enhancement of Thermostability ...................... 289
          10.3.1.Enhancement of Thermostability in Glucose
                 Isomerase (GI) ............................... 289
          10.3.2.Resolving the Reaction Mechanism of Glucose
                 Isomerase (GI): Diffusion-Limited Glucose
                 Isomerase? ................................... 292
    10.4. Enhancement of Stability of Proteases against
          Oxidation and Thermal Deactivation .................. 293
          10.4.1.Enhancement of Oxidation Stability of
                 Subtilisin ................................... 293
          10.4.2.Thermostability of Subtilisin ................ 295
    10.5. Creating New Enzymes with Protein Engineering ....... 295
          10.5.1.Redesign of a Lactate Dehydrogenase .......... 295
          10.5.2.Synthetic Peroxidases ........................ 297
    10.6. Dehydrogenases, Changing Cofactor Specificity ....... 298
    10.7. Oxygenases .......................................... 300
    10.8. Change of Enantioselectivity with Site-Specific
          Mutagenesis ......................................... 302
    10.9. Techniques Bridging Different Protein Engineering
          Techniques .......................................... 303
          10.9.1.Chemically Modified Mutants, a Marriage of
                 Chemical Modification and Protein
                 Engineering .................................. 303
          10.9.2.Expansion of Substrate Specificity with
                 Protein Engineering and Directed Evolution ... 304

11. Applications of Recombinant DNA Technology: Directed
    Evolution ................................................. 309
    11.1. Background of Evolvability of Proteins .............. 310
          11.1.1.Purpose of Directed Evolution ................ 310
          11.1.2.Evolution and Probability .................... 311
          11.1.3.Evolution: Conservation of Essential
                 Components of Structure ...................... 313
    11.2. Process steps in Directed Evolution: Creating
          Diversity and Checking for Hits ..................... 314
          11.2.1.Creation of Diversity in a DNA Library ....... 315
          11.2.2.Testing for Positive Hits: Screening or
                 Selection .................................... 318
    11.3. Experimental Protocols for Directed Evolution ....... 319
          11.3.1.Creating Diversity: Mutagenesis Methods ...... 319
          11.3.2.Creating Diversity: Recombination Methods .... 319
                 11.3.2.1.DNA Shuffling ....................... 320
                 11.3.2.2.Staggered Extension Process
                          (StEP) .............................. 321
                 11.3.2.3.RACHITT (Random Chimeragenesis on
                          Transient Templates) ................ 322
          11.3.3.Checking for Hits: Screening Assays .......... 323
          11.3.4.Checking for Hits: Selection Procedures ...... 324
          11.3.5.Additional Techniques of Directed
                 Evolution .................................... 325
    11.4. Successful Examples of the Application of Directed
          Evolution ........................................... 325
          11.4.1.Application of Error-prone PCR: Activation
                 of Subtilisin in DMF ......................... 325
          11.4.2.Application of DNA Shuffling: Recombination
                 of p-Nitrobenzyl Esterase Genes .............. 326
          11.4.3.Enhancement of Thermostability:
                 p-Nitrophenyl Esterase ....................... 328
          11.4.4.Selection instead of Screening: Creation of
                 a Monomeric Chorismate Mutase ................ 329
          11.4.5.Improvement of Enantioselectivity:
                 Pseudomonas aeruginosa Lipase ................ 329
          11.4.6.Inversion of Enantioselectivity:
                 Hydantoinase ................................. 330
          11.4.7.Redesign of an Enzyme's Active Site: KDPG
                 Aldolase ..................................... 331
    11.5. Comparison of Directed Evolution Techniques ......... 331
          11.5.1.Comparison of Error-Prone PCR and DNA
                 Shuffling: Increased Resistance against
                 Antibiotics .................................. 331
          11.5.2.Protein Engineering in Comparison with
                 Directed Evolution: Aminotransferases ........ 332
                 11.5.2.1.Directed Evolution of
                          Aminotransferases ................... 332
          11.5.3.Directed Evolution of a Pathway:
                 Carotenoids .................................. 333

12. Biocatalysis in Non-conventional Media .................... 339
    12.1. Enzymes in Organic Solvents ......................... 340
    12.2. Evidence for the Perceived Advantages of
          Biocatalysts in Organic Media ....................... 341
          12.2.1. Advantage 1: Enhancement of Solubility
                  of Reactants ................................ 341
          12.2.2. Advantage 2: Shift of Equilibria in
                  Organic Media ............................... 342
                  12.2.2.1. Biphasic Reactors ................. 342
          12.2.3. Advantage 3: Easier Separation .............. 343
          12.2.4. Advantage 4: Enhanced Stability of Enzymes
                  in Organic Solvents ......................... 344
          12.2.5. Advantage 5: Altered Selectivity of
                  Enzymes in Organic Solvents ................. 344
    12.3. State of Knowledge of Functioning of Enzymes
          in Solvents ......................................... 344
          12.3.1. Range of Enzymes, Reactions, and Solvents ... 344
          12.3.2. The Importance of Water in Enzyme
                  Reactions in Organic Solvents ............... 345
                  12.3.2.1. Exchange of Water Molecules
                            between Enzyme Surface and Bulk
                            Organic Solvent ................... 345
                  12.3.2.2. Relevance of Water Activity ....... 346
          12.3.3. Physical Organic Chemistry of Enzymes in
                  Organic Solvents ............................ 347
                  12.3.3.1. Active Site and Mechanism ......... 347
                  12.3.3.2. Flexibility of Enzymes in
                            Organic Solvents .................. 347
                  12.3.3.3. Polarity and Hydrophobicity of
                            Transition State and Binding
                            Site .............................. 348
          12.3.4. Correlation of Enzyme Performance with
                  Solvent Parameters .......................... 349
                  12.3.4.1. Control through Variation of
                            Hydrophobocity: log P Concept ..... 350
                  12.3.4.2. Correlation of Enantio-
                            selectivity with Solvent
                            Polarity and Hydrophobicity ....... 350
    12.4. Optimal Handling of Enzymes in Organic Solvents ..... 351
          12.4.1. Enzyme Memory in Organic Solvents ........... 352
          12.4.2. Low Activity in Organic Solvents Compared
                  to Water .................................... 353
          12.4.3. Enhancement of Selectivity of Enzymes in
                  Organic Solvents ............................ 354
    12.5. Novel Reaction Media for Biocatalytic
          Transformations ..................................... 355
          12.5.1. Substrate as Solvent (Neat Substrates):
                  Acrylamide from Acrylonitrile with
                  Nitrile Hydratase ........................... 355
          12.5.2. Supercritical Solvents ...................... 356
          12.5.3. Ionic Liquids ............................... 356
          12.5.4. Emulsions [Manufacture of
                  Phosphatidylglycerol (PG)] .................. 357
          12.5.5. Microemulsions .............................. 358
          12.5.6. Liquid Crystals ............................. 358
          12.5.7. Ice-Water Mixtures .......................... 359
          12.5.8. High-Density Eutectic Suspensions ........... 361
          12.5.9. High-Density Salt Suspensions ............... 362
          12.5.10.Solid-to-Solid Syntheses .................... 363
    12.6. Solvent as a Parameter for Reaction Optimization
          ("Medium Engineering") .............................. 366
          12.6.1. Change of Substrate Specificity with
                  Change of Reaction M: Specificity of
                  Serine Proteases ............................ 366
          12.6.2. Change of Regioselectivity by Organic
                  Solvent Medium .............................. 367
          12.6.3. Solvent Control of Enantiospecificity of
                  Nifedipines ................................. 367

13. Pharmaceutical Applications of Biocatalysis ............... 373
    13.1. Enzyme Inhibition for the Fight against Disease ..... 374
          13.1.1. Introduction ................................ 374
          13.1.2. Procedure for the Development of
                  Pharmacologically Active Compounds .......... 376
          13.1.3. Process for the Registration of New Drugs ... 377
          13.1.4. Chiral versus Non-chiral Drugs .............. 379
    13.2. Enzyme Cascades and Biology of Diseases ............. 380
          13.2.1. P-Lactam Antibiotics ........................ 380
          13.2.2. Inhibition of Cholesterol Biosynthesis
                  (in part after Suckling, 1990) .............. 382
          13.2.3. Pulmonary Emphysema, Osteoarthritis:
                  Human Leucocyte Elastase (HLE) .............. 385
          13.2.4. AIDS: Reverse Transcriptase and HIV
                  Protease Inhibitors ......................... 389
    13.3. Pharmaceutical Applications of Biocatalysis ......... 393
          13.3.1. Antiinfectives (see also Chapter 7,
                  Section 7.5.1) .............................. 393
                  13.3.1.1. Cilastatin ........................ 393
          13.3.2. Anticholesterol Drugs ....................... 393
                  13.3.2.1. Cholesterol Absorption
                            Inhibitors ........................ 395
          13.3.3. Anti-AIDS Drugs ............................. 396
                  13.3.3.1. Abacavir Intermediate ............. 396
                  13.3.3.2. Lobucavir Intermediate ............ 397
                  13.3.3.3. cis-Aminoindanol: Building Block
                            for Indinavir (Crixivan®) ......... 397
          13.3.4. High Blood Pressure Treatment ............... 398
                  13.3.4.1. Biotransformations towards
                            Omapatrilat ....................... 398
                  13.3.4.2. Lipase Reactions to Intermediates
                           for Cardiovascular Therapy ......... 400
    13.4. Applications of Specific Biocatalytic Reactions
          in Pharma ........................................... 402
          13.4.1. Reduction of Keto Compounds with Whole
                  Cells ....................................... 402
                  13.4.1.1. Trimegestone ...................... 402
                  13.4.1.2. Reduction of Precursor to
                            Carbonic Anhydrase Inhibitor
                            L-685393 .......................... 404
                  13.4.1.3. Montelukast ....................... 404
                  13.4.1.4. LY300164 .......................... 404
          13.4.2. Applications of Pen G Acylase in Pharma ..... 406
                  13.4.2.1. Loracarbef® ....................... 406
                  13.4.2.2. Xemilofibran ...................... 406
          13.4.3. Applications of Lipases and Esterases
                  in Pharma ................................... 407
                  13.4.3.1. LTD4 Antagonist MK-0571 ........... 407
                  13.4.3.2. Tetrahydrolipstatin ............... 407

14. Bioinformatics ............................................ 413
    14.1. Starting Point: from Consequence (Function) to
          Sequence ............................................ 414
          14.1.1. Conventional Path: from Function
                  to Sequence ................................. 414
          14.1.2. Novel Path: from Sequence to Consequence
                  (Function) .................................. 414
    14.2. Bioinformatics: What is it, Why do we Need it, and
          Why Now? (NCBI Homepage) ............................ 415
          14.2.1. What is Bioinformatics? ..................... 415
          14.2.2. Why do we Need Bioinformatics? .............. 416
          14.2.3. Why Bioinformatics Now? ..................... 416
    14.3. Tools of Bioinformatics: Databases, Alignments,
          Structural Mapping .................................. 418
          14.3.1. Available Databases ......................... 418
          14.3.2. Protein Data Bank (PDB) ..................... 418
          14.3.3. Protein Explorer ............................ 419
          14.3.4. ExPASy Server: Roche Applied Science
                  Biochemical Pathways ........................ 419
          14.3.5. GenBank ..................................... 419
          14.3.6. SwissProt ................................... 420
          14.3.7. Information on an Enzyme: the Example of
                  dehydrogenases .............................. 420
                  14.3.7.1. Sequence Information .............. 421
                  14.3.7.2. Structural Information ............ 422
    14.4. Applied Bioinformatics Tools, with Examples ......... 422
          14.4.1. BLAST ....................................... 422
          14.4.2. Aligning Several Protein Sequences using
                  ClustalW .................................... 425
          14.4.3. Task: Whole Genome Analysis ................. 427
          14.4.4. Phylogenetic Tree ........................... 427
    14.5. Bioinformatics for Structural Information on
          Enzymes ............................................. 429
          14.5.1. The Status of Predicting Protein Three-
                  Dimensional Structure ....................... 430
    14.6. Conclusion and Outlook .............................. 431

15. Systems Biology for Biocatalysis .......................... 433
    15.1. Introduction to Systems Biology ..................... 434
          15.1.1. Systems Approach versus Reductionism ........ 434
          15.1.2. Completion of Genomes: Man, Earthworm,
                  and Others .................................. 435
    15.2. Genomics, Proteomics, and other -omics .............. 435
          15.2.1. Genomics .................................... 435
          15.2.2. Proteomics .................................. 436
    15.3. Technologies for Systems Biology .................... 438
          15.3.1. Two-Dimensional Gel Electrophoresis
                  (2D PAGE) ................................... 438
                  15.3.1.1. Separation by Chromatography or
                            Capillary Electrophoresis ......... 439
                  15.3.1.2. Separation by Chemical Tagging .... 440
          15.3.2. Mass Spectroscopy ........................... 441
                  15.3.2.1. MALDI-TOF-MS (Matrix-Assisted
                            Laser Desorption/Ionization
                            Time-of-Flight MS) ................ 444
                  15.3.2.2. ESI-triple-quadrupole MS .......... 444
                  15.3.2.3. ESI-MS Using an Ion Trap
                            Analyzer .......................... 445
          15.3.3. DNA Microarrays ............................. 446
          15.3.4. Protein Microarrays ......................... 447
          15.3.5. Applications of Genomics and Proteomics
                  in Biocatalysis ............................. 448
                  15.3.5.1. Lactic Acid Bacteria and
                            Proteomics ........................ 448
    15.4. Metabolic Engineering ............................... 449
          15.4.1. Concepts of Metabolic Engineering ........... 449
          15.4.2. Examples of Metabolic Engineering ........... 451

16. Evolution of Biocatalytic Function ........................ 457
    16.1. Introduction ........................................ 458
          16.1.2. Congruence of Sequence, Function,
                  Structure, and Mechanism .................... 460
    16.2. Search Characteristics for Relatedness in
          Proteins ............................................ 461
          16.2.1. Classification of Relatedness of Proteins:
                  the-log Family .............................. 461
          16.2.2. Classification into Protein Families ........ 464
          16.2.3. Dominance of Different Mechanisms ........... 465
    16.3. Evolution of New Function in Nature ................. 466
          16.3.1. Dual-Functionality Proteins ................. 469
                  16.3.1.1. Moonlighting Proteins ............. 469
                  16.3.1.2. Catalytic Promiscuity ............. 469
          16.3.2. Gene Duplication ............................ 470
          16.3.3. Horizontal Gene Transfer (HGT) .............. 471
          16.3.4. Circular Permutation ........................ 474
    16.4. a/P-Barrel Proteins as a Model for the
          Investigation of Evolution .......................... 474
          16.4.1. Why Study a/P-Barrel Proteins? .............. 474
          16.4.2. Example of Gene Duplication: Mandelate and
                  a-Ketoadipate Pathways ...................... 475
                  16.4.2.1. Description of Function ........... 480
          16.4.3. Exchange of Function in the Aromatic
                  Biosynthesis Pathways: Trp and His
                  Pathways .................................... 481

17. Stability of Proteins ..................................... 487
    17.1. Summary: Protein Folding, First-Order Decay,
          Arrhenius Law ....................................... 488
          17.1.1. The Protein Folding Problem ................. 488
          17.1.2. Why do Proteins Fold? ....................... 489
    17.2. Two-State Model: Thermodynamic Stability of
          Proteins (Unfolding) ................................ 491
          17.2.1. Protein Unfolding and Deactivation .......... 491
          17.2.2. Thermodynamics of Proteins .................. 491
    17.3. Three-State Model: Lumry-Eyring Equation ............ 493
          17.3.1. Enzyme Deactivation ......................... 493
          17.3.2. Empirical Deactivation Model ................ 494
    17.4. Four-State Model: Protein Aggregation ............... 496
          17.4.1. Folding, Deactivation, and Aggregation ...... 496
          17.4.2. Model to Account for Competition between
                  Folding and Inclusion Body Formation ........ 498
                  17.4.2.1. Case 1: In Vitro - Protein
                            Synthesis Unimportant ............. 498
                  17.4.2.2. Case 2: In Vivo - Protein
                            Synthesis Included ................ 499
    17.5. Causes of Instability of Proteins: AG < 0,
          y(t), A ............................................. 501
          17.5.1. Thermal Inactivation ........................ 502
          17.5.2. Deactivation under the Influence
                  of Stirring ................................. 503
          17.5.3. Deactivation under the Influence of Gas
                  Bubbles ..................................... 504
          17.5.4. Deactivation under the Influence of
                  Aqueous/Organic Interfaces .................. 505
          17.5.5. Deactivation under the Influence of Salts
                  and Solvents ................................ 505
    17.6. Biotechnological Relevance of Protein Folding:
          Inclusion Bodies .................................... 505
    17.7. Summary: Stabilization of Proteins .................. 506
          17.7.1. Correlation between Stability and
                  Structure ................................... 507

18. Artificial Enzymes 511
    18.1. Catalytic Antibodies ................................ 512
          18.1.1. Principle of Catalytic Antibodies:
                  Connection between Chemistry and
                  Immunology .................................. 512
          18.1.2. Test Reaction Selection, Haptens,
                  Mechanisms, Stabilization ................... 514
                  18.1.2.1. Mechanism of Antibody-Catalyzed
                            Reactions ......................... 516
                  18.1.2.2. Stabilization of Charged
                            Transition States ................. 517
                  18.1.2.3. Effect of Antibodies as Entropy
                            Traps ............................. 517
          18.1.3. Breadth of Reactions Catalyzed by
                  Antibodies .................................. 518
                  18.1.3.1. Fastest Antibody-Catalyzed
                            Reaction in Comparison with
                            Enzymes ........................... 518
                  18.1.3.2. Antibody-Catalyzed Reactions
                            without Corresponding Enzyme
                            Equivalent ........................ 518
                  18.1.3.3. Example of a Pericyclic
                            Reaction: Claisen Rearrangement ... 518
                  18.1.3.4. Antibody Catalysts with Dual
                            Activities ........................ 518
                  18.1.3.5. Scale-Up of an Antibody-
                            Catalyzed Reaction ................ 520
                  18.1.3.6. Perspective for Catalytic
                            Antibodies ........................ 520
    18.2. Other Proteinaceous Catalysts: Ribozymes and
          Enzyme Mimics ....................................... 521
          18.2.1. Ribozymes: RNA World before Protein
                  World? ...................................... 521
          18.2.2. Proteinaceous Enzyme Mimics ................. 521
    18.3. Design of Novel Enzyme Activity: Enzyme Models
          (Synzymes) .......................................... 523
          18.3.1. Introduction ................................ 523
          18.3.2. Enzyme Models on the Basis of the Binding
                  Step: Diels-Alder Reaction .................. 523
          18.3.3. Enzyme Models with Binding and Catalytic
                  Effects ..................................... 525
    18.4. Heterogenized/Immobilized Chiral Chemical
          Catalysts ........................................... 526
          18.4.1. Overview of Different Approaches ............ 526
          18.4.2. Immobilization with Polyamino Acids as
                  Chiral Polymer Catalysts .................... 526
          18.4.3. Immobilization on Resins or other
                  Insoluble Carriers .......................... 527
          18.4.4. Heterogenization with Dendrimers ............ 528
          18.4.5. Retention of Heterogenized Chiral Chemical
                  Catalysts in a Membrane Reactor ............. 529
          18.4.6. Recovery of Organometallic Catalysts by
                  Phase Change: Liquid-Liquid Extraction ...... 531
    18.5. Tandem Enzyme Organometallic Catalysts .............. 532

19. Design of Biocatalytic Processes .......................... 539
    19.1. Design of Enzyme Processes: High-Fructose Corn
          Syrup (HFCS) ........................................ 540
          19.1.1. Manufacture of HFCS from Glucose with
                  Glucose Isomerase (GI): Process Details ..... 540
          19.1.2. Mathematical Model for the Description of
                  the Enzyme Kinetics of Glucose Isomerase
                  (GI) ........................................ 541
          19.1.3. Evaluation of the Model of the GI Reaction
                  in the Fixed-Bed Reactor .................... 543
          19.1.4. Productivity of a Fixed-Bed Enzyme
                  Reactor ..................................... 547
    19.2. Processing of Fine Chemicals or Pharmaceutical
          Intermediates in an Enzyme Membrane Reactor ......... 549
          19.2.1. Introduction ................................ 549
          19.2.2. Determination of Process Parameters of
                  a Membrane Reactor .......................... 550
                  19.2.2.1. Case 1: Leakage through
                            Membrane, no Deactivation ......... 551
                  19.2.2.2. Case 2: Leakage through the
                            Membrane and Deactivation of
                            Enzyme ............................ 552
                  19.2.2.3. Design Criterion for EMRs ......... 552
          19.2.3. Large-Scale Applications of Membrane
                  Reactors .................................... 553
                  19.2.3.1. Enantiomerically Pure 1-Amino
                            Acids for Infusion Solutions
                            and as Building Blocks for
                            New Drugs ......................... 553
                  19.2.3.2. Aqueous-Organic Membrane
                            Reactors .......................... 554
                  19.2.3.3. Other Processes in Enzyme
                            Membrane Reactors ................. 554
    19.3. Production of Enantiomerically Pure Hydrophobic
          Alcohols: Comparison of Different Process Routes
          and Reactor Configurations .......................... 556
          19.3.1. Isolated Enzyme Approach .................... 556
          19.3.2. Whole-Cell Approach ......................... 559
          19.3.3. Organometallic Catalyst Approach ............ 561
          19.3.4. Comparison of Different Catalytic
                  Reduction Strategies ........................ 563

20. Comparison of Biological and Chemical Catalysts for
    Novel Processes ........................................... 569
    20.1. Criteria for the Judgment of (Bio-)catalytic
          Processes ........................................... 570
          20.1.1. Discussion: Jacobsen's Five Criteria ........ 570
          20.1.2. Comment on Jabobsen's Five Criteria ......... 572
    20.2. Position of Biocatalysis in Comparison to Chemical
          Catalysts for Novel Processes ....................... 575
          20.2.1. Conditions and Framework for Processes
                  of the Future ............................... 575
          20.2.2. Ibuprofen (Painkiller) ...................... 577
          20.2.3. Indigo (Blue Dye) ........................... 578
          20.2.4. Menthol (Peppermint Flavoring Agent) ........ 580
                  20.2.4.1. Separation of Diastereomeric
                            Salt Pairs ........................ 580
                  20.2.4.2. Homogeneous Catalysis with
                            Rh-BINAP .......................... 580
                  20.2.4.3. Lipase-Catalyzed Resolution of
                            Racemic Menthol Esters ............ 582
          20.2.5. Ascorbic Acid (Vitamin C) ................... 583
                  20.2.5.1. The Traditional Reichstein-
                            Griissner Synthesis ............... 584
                  20.2.5.2. Two-Step Fermentation Process
                            to 2-Ketogulonic Acid with
                            Chemical Step to Ascorbic Acid .... 584
                  20.2.5.3. One-Step Fermentation to
                            2-Ketogulonic Acid with Chemical
                            Step to Ascorbic Acid ............. 585
    20.3. Pathway Engineering through Metabolic Engineering ... 586
          20.3.1. Pathway Engineering for Basic Chemicals:
                  1,3-Propanediol ............................. 586
          20.3.2. Pathway Engineering for Pharmaceutical
                  Intermediates: cis-Aminoindanol ............. 588

Index ......................................................... 593


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:40 2019. Размер: 59,120 bytes.
Посещение N 2037 c 26.04.2010