Preface ....................................................... xiv
Acknowledgements .............................................. xiv
Nomenclature ................................................. xvii
Part One: Introduction and Fundamentals ......................... 1
1. Catalysis: Introduction and Fundamental Catalytic
Phenomena .................................................... 1
1.1. Emergence of Catalyst Technology, A Brief History ...... 4
1.1.1. Basic Variables for Control of Chemical
Reactions ...................................... 4
1.1.2. A Brief History of Catalyst Technology
Development .................................... 4
1.2. Importance of Catalysis and Catalyst Technology ........ 6
1.2.1. Impact on Society and Life Forms ............... 6
1.2.2. Economic Importance of Catalyst Technology ..... 8
1.2.3. Catalyst Technology of the Present ............. 8
1.2.4. Catalysis in Your Future ...................... 10
1.3. Fundamental Catalytic Phenomena and Principles ........ 12
1.3.1. Definitions ................................... 12
1.3.2. The Structure of a Supported Catalyst: Model
and Reality ................................... 16
1.3.3. Steps in a Heterogeneous Catalytic Reaction ... 17
1.3.4. Adsorption and Desorption ..................... 18
1.3.5. Reaction and Diffusional Resistances for a
Catalytic Reaction ............................ 24
1.3.6. Kinetics of Catalytic Surface Reactions ....... 33
1.3.7. Effects of Surface Structure and Support on
Catalytic Activity ............................ 41
1.4. Summary of Important Principles ....................... 51
1.5. Recommended Sources for Further Study ................. 54
1.6. Exercises ............................................. 54
1.7. References ............................................ 57
2. Catalyst Materials, Properties and Preparation .............. 60
2.1. Introduction .......................................... 61
2.2. Catalyst Materials .................................... 61
2.2.1. Make-up of a Typical Heterogeneous Catalyst ... 62
2.2.2. Active Phases, Carriers, Promoters ............ 62
2.2.3. Molecular Sieves and Zeolites ................. 68
2.3. Catalyst Properties ................................... 78
2.3.1. Catalyst Engineering .......................... 78
2.3.2. Physical, Mechanical, and Chemical
Properties .................................... 80
2.3.3. Dynamic (Catalytic) Properties of Catalysts ... 89
2.4. Catalyst Preparation and Forming ...................... 90
2.4.1. Making the Finished Catalyst .................. 91
2.4.2. Catalyst Forming ............................. 102
2.5. The Future ........................................... 107
2.5.1. Muitidisciplinary, Mission-Oriented,
Fundamental Research Aimed at Development
of 107 New Concepts of Catalysis Design ...... 107
2.5.2. Design of New Molecular Sieves ............... 107
2.5.3. Design of Sophisticated Composite Catalysts
Based on Nanostructures ...................... 108
2.5.4. Biocataiysts: The Development of Stabilized
and/or Supported Enzymes 109 and
Organometallic Enzyme Mimics ................. 109
2.5.5. Novel Catalyst Preparation Methods: The
Preparation of Amorphous Metal Powders, 109
Supported Catalysts and Nanocolloids by a
Sonochemical Technique ....................... 109
2.5.6. Combinatorial Design of Catalysts ............ 110
2.5.7. Computational Methods for Design of
Catalysts .................................... 111
2.6. Summary .............................................. 111
2.7. Recommended Sources for Further Study ................ 112
2.8. Exercises ............................................ 113
2.9. References ........................................... 114
3. Catalyst Characterization and Selection .................... 118
3.1. Principles and Objectives of Catalyst
Characterization ..................................... 119
3.1.1. Definition of Catalyst Characterization ...... 119
3.1.2. Objectives of Catalyst Characterization ...... 121
3.1.3. Some Perspectives and Principles of
Characterization ............................. 123
3.2. Determining Physical Properties of Catalysts ......... 124
3.2.1. Surface Area, Pore Size, and Pore Volume ..... 124
3.2.2. Particle Size and Size Distribution .......... 135
3.2.3. Mechanical Strength .......................... 136
3.2.4. Density ...................................... 137
3.3. Determining Chemical Properties of Catalysts ......... 138
3.3.1. Chemical Composition ......................... 139
3.3.2. Chemical Structure and Morphology ............ 139
3.3.3. Dispersion or Crystallite Size of Catalytic
Species ...................................... 145
3.3.4. Surface Acidity .............................. 152
3.3.5. Surface Reactivity ........................... 153
3.3.6. Surface Chemistry, Structure, and
Composition .................................. 160
3.4. Catalyst Selection ................................... 179
3.5. The Future ........................................... 181
3.5.1. Future Directions ............................ 181
3.5.2. Future Needs for Catalyst Characterization ... 184
3.6. Summary .............................................. 184
3.7. Recommended Sources for Further Study ................ 186
3.8. Exercises ............................................ 187
3.9. References ........................................... 191
4. Reactors, Reactor Design, and Activity Testing ............. 197
4.1. Introduction ......................................... 198
4.2. Definition and Classification of Reactors ............ 198
4.2.1. Definition ................................... 198
4.2.2. Classification ............................... 199
4.3. Fundamentals of Reactor Design ....................... 200
4.3.1. Basic Approach to Reactor Design ............. 200
4.3.2. Material Balances for Ideal Reactors ......... 202
4.3.3. Temperature Effects and Energy Balances ...... 208
4.3.4. Examples of Reactor Design ................... 216
4.4. Collecting, Analyzing and Reporting Data from
Laboratory Reactors .................................. 224
4.4.1. Collection of Data: Integral and
Differential Reactors ........................ 224
4.4.2. Analyzing and Reporting Data from
Laboratory Reactors .......................... 227
4.4.3. Examples of Rate Data Analysis ............... 230
4.5. Choosing Reactors in the Laboratory and Plant ........ 237
4.5.1. Choosing Reactors for the Laboratory ......... 237
4.5.2. Selection of Plant Reactors .................. 242
4.6. The Future ........................................... 247
4.6.1. Future Trends in Reactor Design and
Kinetics ..................................... 247
4.6.2. Kinetic Models for Reactor and Process
Design ....................................... 248
4.6.3. Process Plant Simulation and Corporate
Modeling: A New Paradigm ..................... 249
4.7. Summary .............................................. 250
4.8. Recommended Sources for Further Study ................ 251
4.9. Exercises ............................................ 252
4.10. References ........................................... 258
5. Catalyst Deactivation: Causes, Mechanisms, and Treatment ... 260
5.1. Introduction ......................................... 261
5.2. Causes and Mechanisms of Deactivation ................ 261
5.2.1. Poisoning .................................... 262
5.2.2. Fouling, Coking, and Carbon Deposition ....... 267
5.2.3. Thermal Degradation and Sintering ............ 274
5.2.4. Loss of Catalytic Phases by Vapor
Transport .................................... 279
5.2.5. Mechanical Failure: Attrition and Crushing
of Catalysts ................................. 281
5.3. Prevention and Regenerative Treatment of Catalyst
Decay ................................................ 283
5.3.1. Prevention of Catalyst Decay ................. 283
5.3.2. Regeneration of Deactivated Catalysts ........ 287
5.4. Treatment of Catalyst Decay in Reactor and Process
Design and Operation ................................. 293
5.4.1. Modeling and Design of Deactivation
Processes .................................... 293
5.4.2. Experimental Assessment of Deactivation
Kinetics ..................................... 300
5.4.3. Reactor and Process Design and Operation
with Deactivating Catalyst ................... 312
5.5. The Future ........................................... 321
5.5.1. Projected Trends ............................. 321
5.5.2. Future Needs ................................. 322
5.6. Summary .............................................. 322
5.7. Recommended Sources for Further Study ................ 323
5.8. Exercises ............................................ 324
5.9. References ........................................... 331
Part Two: Industrial Practice ................................. 337
6. Hydrogen Production and Synthesis Gas Reactions ............ 339
6.1. Introduction ......................................... 340
6.2. Production of Hydrogen and Synthesis Gas via
Steam Reforming ...................................... 342
6.2.1. Overall Process .............................. 342
6.2.2. Purification of Hydrocarbons ................. 344
6.2.3. Primary Steam Reforming ...................... 345
6.2.4. Secondary Steam Reforming .................... 367
6.2.5. High-Temperature Water-Gas-Shift ............. 367
6.2.6. Low-Temperature Water-Gas-Shift .............. 369
6.2.7. Final CO/C02 Removal/Methanation ............. 370
6.3. Ammonia Synthesis .................................... 371
6.3.1. Introduction and Background .................. 371
6.3.2. Reaction Chemistry, Thermodynamics,
Kinetics, and Mechanism ...................... 372
6.3.3. Catalyst Design .............................. 376
6.3.4. Catalyst Deactivation ........................ 379
6.3.5. Reactor and Process Design ................... 380
6.4. Methanol Synthesis ................................... 382
6.4.1. Introduction ................................. 382
6.4.2. Reaction Chemistry and Equilibrium
Thermodynamics ............................... 382
6.4.3. Reaction Mechanism, Active Sites, and
Kinetics ..................................... 385
6.4.4. Methanol Synthesis Catalysts ................. 390
6.4.5. Catalyst Deactivation ........................ 392
6.4.6. Methanol Synthesis Process ................... 393
6.4.7. Methanol Synthesis Literature ................ 397
6.4.8. Higher Alcohol Synthesis ..................... 398
6.5. Fischer-Tropsch Synthesis ............................ 398
6.5.1. Introduction ................................. 398
6.5.2. History ...................................... 398
6.5.3. Chemistry and Thermodynamics ................. 402
6.5.4. Mechanisms, Kinetics, and Models ............. 405
6.5.6. Co Product Distributions in and Selectivity
Models of FTS ................................ 429
6.5.7. Catalyst Deactivation and Regeneration ....... 450
6.5.8. Reactor Design ............................... 457
6.5.9. Process Technology ........................... 461
6.6. The Future ........................................... 464
6.6.1. General Trends ............................... 464
6.6.2. Hydrogen and Synthesis Gas Production ........ 465
6.6.3. Ammonia Synthesis ............................ 465
6.6.4. Methanol Synthesis ........................... 465
6.6.5. Fischer-Tropsch Synthesis .................... 466
6.7. Summary .............................................. 466
6.8. Recommended Readings for Further Study ............... 467
6.9. Exercises ............................................ 470
6.8 References ............................................ 472
7. Hydrogenation and Dehydrogenation of Organic Compounds ..... 487
7.1. Introduction ......................................... 488
7.2. Hydrogenation Catalyst and Reactor Technologies ...... 488
7.2.1. Hydrogenation Catalysts ...................... 488
7.2.2. Hydrogenation Reactor Design, Reactor
Technology, and Process Conditions ........... 496
7.3. Hydrogenation Reactions and Processes ................ 513
7.3.1. Hydrogenation of Alkenes to Alkanes and
Alkadienes or Alkynes to Alkenes ............. 513
7.3.2. Hydrogenation of Aromatics and
Nitroaromatics ............................... 518
7.3.3. Hydrogenation of Nitriles to Amines .......... 523
7.3.4. Hydrogenation of Fats and Oils ............... 524
7.3.5. Hydrogenation of Carbonyl Groups ............. 531
7.3.6. Miscellaneous Hydrogenation Reactions ........ 532
7.4. Dehydrogenation: Reaction Chemistry; Catalyst and
Reactor Technologies ................................. 533
7.4.1. Dehydrogenation Reaction Chemistry ........... 534
7.4.2. Dehydrogenation Catalysts .................... 535
7.4.3. Dehydrogenation Reactor Technology ............ 536
7.5. Important Dehydrogenation Reactions and Processes .... 536
7.5.1. Alkanes to Alkenes ........................... 536
7.5.2. Dehydrogenation of Ethylbenzene to Styrene ... 543
7.6. The Future ........................................... 545
7.6.1. Hydrogenation Catalysis ...................... 545
7.6.2. Dehydrogenation Catalysis .................... 548
7.7. Summary .............................................. 549
7.8. Recommended Sources for Further Study ................ 550
7.9. Exercises ............................................ 551
7.10. References ........................................... 554
8. Catalytic Oxidations of Inorganic and Organic Compounds .... 560
8.1. Catalytic Oxidation Reactions ........................ 561
8.1.1. Introduction, Background, and Perspective .... 561
8.1.2. Classification of Oxidation Reactions ........ 561
8.2. Oxidation of Inorganic Compounds ..................... 562
8.2.1. Introduction ................................. 562
8.2.2. Sulfuric Acid Production ..................... 562
8.2.3. Nitric Acid Production ....................... 570
8.3. Hydrogen Cyanide Production (Ammoxidation of
Methane) ............................................. 575
8.3.1. Reaction Chemistry ........................... 575
8.3.2. Catalyst ..................................... 576
8.3.3. Processes .................................... 576
8.3.4. Catalyst Deactivation ........................ 578
8.4. Selective (Partial) Oxidation of Organic Compounds ... 578
8.4.1. Introduction, Background and Chemistry ....... 578
8.4.2. Methanol to Formaldehyde ..................... 584
8.4.3. Ethylene to Ethylene Oxide ................... 597
8.4.4. Ammoxidation of Propylene to Acrylonitrile
and Related Processes ........................ 604
8.4.5. n-Butane to Maleic Anhydride ................. 610
8.5. Future of Catalytic Oxidation ........................ 618
8.5.1. Short-Term Trends ............................ 619
8.5.2. Long-Term Future ............................. 621
8.6. Summary .............................................. 624
8.7. Recommended Sources for Further Study ................ 626
8.8. Exercises ............................................ 627
8.9. References ........................................... 629
9. Petroleum Refining and Processing .......................... 635
9.1. Petroleum Refining ................................... 636
9.1.1. Introduction ................................. 636
9.1.2. Fractionation of Petroleum ................... 637
9.1.3. Major Catalytic Applications for Upgrading
Distilled Crude Oil .......................... 639
9.2. Hydrotreating ........................................ 639
9.2.1. Reaction Chemistry and Kinetics .............. 639
9.2.2. Hydrotreating Catalyst Design ................ 645
9.2.3. Reactor Design ............................... 647
9.2.4. Hydrotreating Process ........................ 648
9.2.5. Catalyst Deactivation and Regeneration ....... 649
9.2.6. Ultra Low Sulfur Diesel ...................... 652
9.3. Catalytic Cracking ................................... 653
9.3.1. Reaction Chemistry of Fluidized Catalytic
Cracking ..................................... 653
9.3.2. Mechanisms and Kinetics ...................... 655
9.3.3. Cracking Catalysts ........................... 662
9.3.4. Catalytic Cracking Process ................... 669
9.3.5. Deactivation ................................. 670
9.4. Hydrocracking ........................................ 671
9.4.1. Chemistry .................................... 671
9.4.2. Catalysts .................................... 672
9.4.3. Process ...................................... 673
9.4.4. Catalyst Deactivation ........................ 673
9.5. Naphtha Reforming .................................... 674
9.5.1. Chemistry .................................... 675
9.5.2. Catalysts .................................... 678
9.5.3. Process ...................................... 679
9.5.4. Catalyst Deactivation and Regeneration ....... 681
9.6. Isomerization ........................................ 682
9.6.1. Hydroisomerization of Normal Butane,
Pentane and Hexane ........................... 682
9.6.2. Isomerization of Xylenes ..................... 684
9.7. Alkylation ........................................... 685
9.7.1. Catalysts .................................... 685
9.7.2. Liquid Acid Process .......................... 686
9.7.3. Ethylbenzene Synthesis ....................... 687
9.8. Reformulated Gasoline and Methyl-/-Butyl Ether ....... 687
9.8.1. Reformulated Gasoline (RFG) .................. 687
9.8.2. MTBE Production .............................. 688
9.9. The Future ........................................... 689
9.9.1. Near-Term and Process-Specific Trends ........ 689
9.9.2. The Long Term Future of Refining (the next
10-25 years) ................................. 692
9.10. Summary .............................................. 695
9.11. Recommended Sources for Further Study ................ 696
9.12. Exercises ............................................ 696
9.13. References ........................................... 699
10.Environmental Catalysis: Mobile Sources .................... 705
10.1. Introduction ......................................... 706
10.2. Automotive Gasoline Catalytic Converters ............. 707
10.2.1. Introduction and Background .................. 707
10.2.2. Early Oxidation Converters (1976-1979) ....... 708
10.2.3. Three-way Catalysts (1979-2000) .............. 713
10.2.4. Modern Three Way Catalytic Converters
(Post-2000) .................................. 717
10.2.5. Lean Burn Engines and Emissions Abatement
Catalysts .................................... 724
10.2.6. Converter Design ............................. 725
10.3. Catalytic Abatement of Emissions from Diesel
Engines .............................................. 731
10.3.1. Diesel Emissions ............................. 731
10.3.2. Diesel Oxidation Catalyst .................... 733
10.3.3. Engine Testing of Catalysts .................. 736
10.3.4. Catalyst Deactivation ........................ 736
10.3.5. Catalytic Treatment of Soot from Diesel
Emission ..................................... 737
10.3.6. Future of Diesel Emission Abatement .......... 738
10.4. Ozone Abatement in High-Flying Commercial Aircraft ... 742
10.5. Summary .............................................. 743
10.5.1. Development, Technological Significance
and Status of Catalytic Emissions Controls
for Gasoline-Powered Vehicles ................ 743
10.5.2. Development and Status of Catalytic
Emissions Control Technology for
Diesel-Powered Vehicles ...................... 744
10.5.3. Future Trends in Catalytic Emissions
Control for Mobile Sources ................... 745
10.6. Recommended Sources for Further Study ................ 745
10.7. Exercises ............................................ 746
10.7. References ........................................... 747
11.Environmental Catalysis: Stationary Sources ................ 753
11.1. Introduction ......................................... 754
11.2. Catalytic Reduction of NOx ........................... 755
11.2.1. Non-Selective Catalytic Reduction of NOx ..... 755
11.2.2. Selective Catalytic Reduction of NOx ......... 776
11.2.3. N20 Decomposition ............................ 777
11.3. Catalytic Oxidation of Hydrocarbon (VOC) Emissions ... 778
11.4. Catalytic Oxidation of CO Emissions .................. 783
11.5. Kinetics of and Reactor Design for CO and VOC
Oxidations ........................................... 784
11.5.1. Kinetics and Reactor Design for Oxidation
of CO ........................................ 785
11.5.2. Kinetics and Reactor Design for Oxidation
of Hydrocarbons .............................. 789
11.5.3. Representative, Relevant Modeling Studies .... 794
11.6. Catalytic Abatement of Emissions from Wood Stoves .... 795
11.7. The Future ........................................... 796
11.7.1. Introduction ................................. 796
11.7.2. Advanced/Novel Catalytic Materials ........... 796
11.7.3. Catalytically Supported Thermal Combustion ... 797
11.7.4. Management of Hazardous and Toxic
Materials, Wastes and CFCs ................... 800
11.7.5. Catalytic Clean-up for Specialty
Applications ................................. 800
11.7.6. Green Engineering/Chemistry and Renewable
Processes .................................... 802
11.7.7. Future Needs ................................. 805
11.8. Summary .............................................. 805
11.9. Recommendations for Further Study .................... 806
11.10.Exercises ............................................ 807
11.11.References ........................................... 810
12.Homogeneous, Enzyme, And Polymerization Catalysis .......... 820
12.1. Homogeneous Catalysis ................................ 821
12.1.1 Introduction and Definitions .................. 821
12.1.2. Fundamentals of Homogeneous Catalysis ........ 822
12.1.3. Industrial Homogeneous Catalytic
Processes .................................... 837
12.1.4. Examples of Important Processes .............. 840
12.1.5. The Future of Homogeneous Catalysis .......... 844
12.2. Enzyme Catalysis ..................................... 846
12.2.1. Introduction ................................. 846
12.2.2. Chemistry, Kinetics, and Mechanisms .......... 847
12.2.3. Industrial Enzymatic Processes and
Biotechnology ................................ 652
12.2.4. Examples of Important Processes .............. 859
12.2.5. The Future of Enzyme Catalysis ............... 862
12.3. Polymerization Catalysis ............................. 864
12.3.1. Introduction and Definitions ................. 864
12.3.2. Fundamentals of Polymerization
Synthesis/Catalysis .......................... 871
12.3.3. Industrial Polymerization Catalysts and
Catalytic Processes .......................... 879
12.3.4. Examples of Important Polymerization ......... 887
12.3.5. Processes The Future of Polymerization
Catalysis .................................... 895
12.4. Summary .............................................. 897
12.5. Recommended Sources for Further Study ................ 899
12.6. Exercises ............................................ 901
12.7. References ........................................... 903
13.Hydrogen Production and Fuel Cells: Catalyst Technology .... 909
13.1. Introduction, Perspective, and Objectives ............ 910
13.2. Production of Hydrogen for Fuel Cells ................ 912
13.2.1. Traditional catalytic steps in the
production of Hydrogen for Chemical
Applications ................................. 912
13.2.2. Alternative Approaches to Generating
Hydrogen for the Fuel Cell ................... 914
13.3. The Proton Exchange Membrane (РЕМ) Fuel Cell ......... 921
13.3.1. РЕМ Fuel Cell ................................ 921
13.3.2. Electrochemical Reactions .................... 922
13.3.3. The Membrane Electrode Assembly (MEA) ........ 923
13.3.4. The Solid Polymer Membrane ................... 924
13.3.5. Potential Applications of РЕМ Fuel Cells ..... 925
13.3.6. Operational Factors in a PEM Fuel
Processor/Fuel Cell .......................... 926
13.4. Other Fuel Cells ..................................... 927
13.4.1. Alkaline Electrolyte Fuel Cell ............... 927
13.4.2. Phophoric Acid Fuel Cell ..................... 927
13.4.3. Molten Carbonate Fuel Cell ................... 928
13.4.4. Solid Oxide Fuel Cell ........................ 930
13.4.5. Direct Methanol Fuel Cell .................... 931
13.5. Summary and Concluding Remarks ....................... 931
13.6. Recommended Sources for Further Study ................ 932
13.7. Exercises ............................................ 933
13.8. References ........................................... 933
Glossary ...................................................... 939
Index ......................................................... 954
|