Petrina D.Ya. Stochastic dynamics and boltzmann hierarchy (Киiв, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаPetrina D.Ya. Stochastic dynamics and boltzmann hierarchy: proceeding of Institute of Mathematics of NAS of Ukraine. - Киiв, 2008. - 400 p. - (Mathematics and its applications; Vol. 74). - ISBN 966-02-2571-7; ISBN 978-966-02-4783-3
 

Оглавление / Contents
 
Preface ......................................................... 5

Introduction ................................................... 10

Chapter 1
System of Hard Spheres ......................................... 27
1.1. Introduction .............................................. 27
1.2. Hamiltonian Dynamics of a System of Hard Spheres .......... 27
     1.2.1. Hamilton Equations ................................. 27
     1.2.2. Existence of Trajectories .......................... 30
     1.2.3. Liouville Theorem .................................. 32
1.3. Evolution Operator for a System of Hard Spheres ........... 33
     1.3.1. Definition of the Evolution Operator ............... 33
     1.3.2. Liouville Equation ................................. 36
     1.3.3. Evolution Operator and Liouville Equation for
            Negative Time ...................................... 39
1.4. BBGKY Hierarchy for Systems of Hard Spheres ............... 40
     1.4.1. Definition of Correlation Functions ................ 40
     1.4.2. Derivation of Hierarchy of Equations for
            Correlation Functions .............................. 44
     1.4.3. Solution ofthe BBGKY Hierarchy in the Space of
            Summable Functions ................................. 46
     1.4.4. Solution ofthe BBGKY Hierarchy ..................... 48
     1.4.5. BBGKY Hierarchy with Nonstandard Normalization ..... 52
1.5. Justification ofthe Boltzmann-Grad Limit .................. 54
     1.5.1. Definition ofthe Boltzmann-Grad Limit .............. 54
     1.5.2. Auxiliary Lemmas ................................... 58
     1.5.3. Convergence of Solutions of the BBGKY Hierarchy
            of a System of Hard Spheres to Solutions of
            the Ordinary Boltzmann Hierarchy in
            the Boltzmann-Grad Limit ........................... 59
     1.5.4. Convergence of Solutions of the BBGKY Hierarchy
            of Systems of Hard Spheres to Solutions of
            the Proper Stochastic Hierarchy in
            the Boltzmann-Grad Limit ........................... 64

Chapter 2
Stochastic Dynamics as the Limit of the Hamiltonian Dynamics
of Hard Spheres ................................................ 67
2.1. Introduction .............................................. 67
2.2. Stochastic Trajectories as the Limit of the Hamiltonian
     Trajectories of Hard Spheres .............................. 68
     2.2.1. Hamiltonian Trajectories of Hard Spheres ........... 68
     2.2.2. Stochastic Trajectories ............................ 70
     2.2.3. Convergence of Hamiltonian Trajectories to
            Stochastic Trajectories ............................ 73
2.3. New Representation of Hamiltonian and Stochastic
     Trajectories .............................................. 77
     2.3.1. Representation of Hamiltonian Trajectories ......... 77
     2.3.2. Representation of Stochastic Trajectories .......... 79
2.4. Functional for a System of Two Hard Spheres ............... 82
     2.4.1. Domain of Interaction and Functional ............... 82
     2.4.2. Derivative of Functional ........................... 86
2.5. Functional for a System of Two Stochastic Particles ....... 88
     2.5.1. Functional of Stochastic Particles as the Limit
            of the Functional of Hard Spheres .................. 88
     2.5.2. Derivative of Functional with Respect to Time ...... 94
2.6. General Case of Many-Particle System ...................... 97
     2.6.1. Functional for Many Hard Spheres ................... 97
     2.6.2. Derivative of Functional with Respect to Time ..... 100
     2.6.3. Limit of the Average of the Functional for Hard
            Spheres and the Functional of Stochastic
            Particles ......................................... 101
2.7. Infinitesimal Operator of the Evolution Operator of
     Stochastic Particles ..................................... 108
     2.7.1. Dynamics of Finitely Many Particles ............... 108
     2.7.2. Evolution Operator of Finitely Many Particles
            and Its Infinitesimal Operator .................... 112
     2.7.3. Evolution Operator for Negative Time .............. 119
     2.7.4. Equivalence of the Infinitesimal Operators ........ 124

Chapter 3
Stochastic Boltzmann Hierarchy ................................ 129
3.1. Introduction ............................................. 129
3.2. Average of Observables over State ........................ 131
     3.2.1. Stochastic Dynamics ............................... 131
     3.2.2. Average for Infinitesimal Time .................... 132
     3.2.3. Infinitesimal Operator ............................ 136
     3.2.4. Infinitesimal Operator with Fixed Random
            Vectors ........................................... 139
     3.2.5. Duality Principle ................................. 143
     3.2.6. Generalized Function .............................. 148
3.3. Hierarchy for Correlation Functions ...................... 150
     3.3.1. Derivation of Hierarchy from Equation for
            Distribution Function ............................. 150
     3.3.2. Stochastic Hierarchy in Grand Canonical
            Ensemble .......................................... 158
     3.3.3. Duality Principle for Correlation Functions ....... 160
3.4. Derivation of Hierarchy from Functional Average .......... 162
     3.4.1. Functional-Average for s-Particle Observable ...... 162
     3.4.2. Derivation of the Stochastic Boltzmann Hierarchy
            from the Ito-Liouville Equation ................... 167
     3.4.3. Derivation of Ordinary Boltzmann Hierarchy from
            Boltzmann Equation ................................ 170
3.5. Derivation of Stochastic Boltzmann Hierarchy from
     the BBGKY Hierarchy for Hard Spheres ..................... 173
     3.5.1. Stochastic Boltzmann Hierarchy .................... 173
     3.5.2. Solutions of the Ordinary Boltzmann Hierarchy
            and the Boltzmann-Grad Limit of Solutions of
            the BBGKY Hierarchy ............................... 177
     3.5.3. Derivation of the Stochastic Boltzmann Hierarchy
            from the Evolution Operator of the BBGKY
            Hierarchy for Hard Spheres ........................ 179
     3.5.4. Functional for Correlation Functions .............. 183
     3.5.5. Stochastic Boltzmann Hierarchy .................... 186
     3.5.6. Different Representations of the Infinitesimal
            Operator .......................................... 189
     3.5.7. Different Equivalent Forms of the Stochastic
            Boltzmann Hierarchy ............................... 192
3.6. Boltzmann Equation and Its Solutions in Terms of
     Stochastic Dynamics ...................................... 193
     3.6.1. Iterations of the Boltzmann Equation .............. 193
     3.6.2. Iterations of the Boltzmann Hierarchies ........... 199

Chapter 4
Solutions of the Stochastic Boltzmann Hierarchy ............... 202
4.1. Introduction ............................................. 202
4.2. Solutions of the Stochastic Hierarchy in the Space of
     Bounded Functions ........................................ 203
     4.2.1. Abstract Form of the Stochastic Hierarchy ......... 203
     4.2.2. Convergence of Series (4.2.8) in the Space Eξ,β .... 205
     4.2.3. One Auxiliary Lemma ............................... 209
     4.2.4. Convergence of Series (4.2.8) in the Space Eξ,β .... 211
4.3. Chaos Property of Solutions of the Stochastic
     Hierarchy ................................................ 215
     4.3.1. New Representation of the Series of Iterations .... 215
     4.3.2. Chaos Property .................................... 218
     4.3.3. Justification of the Thermodynamic Limit .......... 220
     4.3.4. New Representation of the Series of Iterations .... 221

Chapter 5
Spatially Homogeneous Boltzmann Hierarchy ..................... 224
5.1. Introduction ............................................. 224
5.2. Stochastic Dynamics for the Spatially Homogeneous
     Stochastic Boltzmann Hierarchy ........................... 228
     5.2.1. System of N Particles ............................. 228
     5.2.2. Equation for Spatially Homogeneous Distribution
            Functions ......................................... 233
5.3. Derivation of the Spatially Homogeneous Hierarchy ........ 235
     5.3.1. Spatially Homogeneous Hierarchy within
            the Framework of Canonical and Grand Canonical
            Ensemble .......................................... 235
     5.3.2. Hierarchy with Fixed Random Vectors ............... 239
5.4. Representation of Solutions of the Spatially
            Homogeneous Hierarchy ............................. 241
     5.4.1. Representation of Solutions of the Spatially
            Homogeneous Hierarchy through Series of
            Iterations ........................................ 241
     5.4.2. One-Particle Distribution Function as a Solution
            of the Boltzmann Equation ......................... 247

Chapter 6
Stochastic Dynamics for the Boltzmann Equation with
Arbitrary Differential Scattering Cross Section ............... 253
6.1. Introduction ............................................. 253
6.2. Stochastic Dynamics ...................................... 256
     6.2.1. Functional Average ................................ 256
     6.2.2. Infinitesimal Operator ............................ 261
     6.2.3. Infinitesimal Operator with Fixed Random
            Vectors ........................................... 264
     6.2.4. Duality Principle ................................. 267
6.3. Hierarchy for Correlation Functions ...................... 274
     6.3.1. Derivation of Hierarchy from Equation for
            Distribution Function ............................. 274
     6.3.2. Derivation of Hierarchy from Functional Average ... 279
6.4. Solutions of the Stochastic Hierarchy .................... 284
     6.4.1. Abstract Form of the Stochastic Hierarchy ......... 284
     6.4.2. Chaos Property .................................... 286
     6.4.3. Spatially Homogeneous Initial Data ................ 289
6.5. Stochastic Process in Momentum Space ..................... 290
     6.5.1. Averaging Procedure in Spatially Homogeneous
            Case .............................................. 290
     6.5.2. Differential Equation for Spatially Homogeneous
            Distribution Functions ............................ 293
     6.5.3. Hierarchy for Correlation Functions in
            Mean-Field Approximation .......................... 294

Chapter 7
Analog of Liouville Equation and BBGKY Hierarchy for
a System of Hard Spheres with Inelastic Collisions ............ 297
7.1. Introduction ............................................. 297
7.2. Trajectories of a System of Hard Spheres with Inelastic
     Collisions ............................................... 299
     7.2.1. Dynamics .......................................... 299
     7.2.2. Trajectory ........................................ 302
7.3. Evolution Operator ....................................... 305
     7.3.1. Definition of Evolution Operator .................. 305
     7.3.2. Properties of Evolution Operator .................. 306
     7.3.3. Differential Equation for Distribution Function ... 310
7.4. Equation for a Sequence of Correlation Functions ......... 318
     7.4.1. Definition of Correlation Functions ............... 318
     7.4.2. Equation for Correlation Functions ................ 319
     7.4.3. Boundary Conditions for Correlation Functions ..... 325
     7.4.4. Grand Canonical Ensemble .......................... 329
Appendix A .................................................... 330
Appendix B .................................................... 333

Chapter 8
Solution of the BBGKY Hierarchy for a System of Hard Spheres
with Inelastic Collisions ..................................... 335
8.1. Introduction ............................................. 335
8.2. Solution of Hierarchy for Correlation Functions .......... 338
     8.2.1. Solution Formula .................................. 338
     8.2.2. Convergence of Series ............................. 342
     8.2.3. Group Property .................................... 343
     8.2.4. Strong Continuity of the Group .................... 345
8.3. Infinitesimal Generator of the Group and a Solution of
     the BBGKY Hierarchy ...................................... 346
     8.3.1. Infinitesimal Generator ........................... 346
     8.3.2. Existence of Solutions of the BBGKY Hierarchy ..... 348
     8.3.3. States of Infinite Systems ........................ 349
8.4. Stochastic Boltzmann Hierarchy for Granular Flow ......... 350
     8.4.1. Stochastic Dynamics for Hard Spheres with
            Inelastic Collisions .............................. 350
     8.4.2. Stochastic Trajectories and Operator of
            Evolution ......................................... 351
     8.4.3. Functional Average ................................ 353
     8.4.4. Hierarchy for Correlation Functions ............... 355
     8.4.5. Solution of the Stochastic Boltzmann Hierarchy .... 356
     8.4.6. Ordinary Boltzmann Hierarchy ...................... 358

References .................................................... 362


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:38 2019. Размер: 17,292 bytes.
Посещение N 1659 c 26.04.2010