Cousteix J. Asymptotic analysis and boundary layers (Berlin, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаCousteix J. Asymptotic analysis and boundary layers / Cousteix J., Mauss J. - Berlin: Springer, 2007. - 432 p. - (Scientific computation). - ISSN 1434-8322; ISBN 978-3-540-46488-4
 

Оглавление / Contents
 
Preface ......................................................... V

Acknowledgements ............................................. VIII

Abbreviations ................................................ XVII

1 Introduction .................................................. 1

2 Introduction to Singular Perturbation Problems ................ 7
  2.1 Regular and Singular Problems ............................. 8
      2.1.1 Linear Oscillator ................................... 8
      2.1.2 Secular Problem .................................... 11
      2.1.3 Singular Problem ................................... 14
  2.2 Approximation Methods for Singular Perturbation
      Problems ................................................. 15
      2.2.1 Method of Matched Asymptotic Expansions ............ 16
      2.2.2 Successive Complementary Expansion Method .......... 19
      2.2.3 Multiple Scale Method .............................. 20
      2.2.4 Poincare-Lighthill's Method ........................ 22
      2.2.5 Renormalization Group Method ....................... 24
  2.3 Conclusion ............................................... 25
  Problems ..................................................... 25

3 Boundary Layer Structure ..................................... 31
  3.1 Study of a Second Order Differential Equation ............ 31
  3.2 Analysis of each Case .................................... 35
  3.3 Conclusion ............................................... 40
  Problems ..................................................... 41

4 Asymptotic Expansions ........................................ 43
  4.1 Order Functions. Order of a Function ..................... 43
      4.1.1 Definition of an Order Function .................... 43
      4.1.2 Comparison of Order Functions ...................... 43
      4.1.3 Total Ordering ..................................... 44
      4.1.4 Order of a Function ................................ 45
  4.2 Asymptotic Sequence ...................................... 46
      4.2.1 Definition of an Asymptotic Sequence ............... 46
      4.2.2 Class of Equivalence ............................... 46
      4.2.3 Gauge Functions .................................... 47
  4.3 Asymptotic Expansion ..................................... 47
      4.3.1 Asymptotic Approximation ........................... 47
      4.3.2 Regular Functions .................................. 49
      4.3.3 Regular and Generalized Asymptotic Expansions ...... 50
      4.3.4 Convergence and Accuracy ........................... 51
      4.3.5 Operations on Asymptotic Expansions ................ 54
  4.4 Conclusion ............................................... 55
  Problems ..................................................... 55

5 Successive Complementary Expansion Method .................... 59
  5.1 Method of Matched Asymptotic Expansions .................. 59
      5.1.1 Expansion Operator ................................. 59
      5.1.2 Outer Expansion - Inner Expansion .................. 60
      5.1.3 Asymptotic Matching ................................ 61
  5.2 Boundary Layer ........................................... 65
      5.2.1 Expansion Operator to a Given Order ................ 65
      5.2.2 Significant Approximations ......................... 66
  5.3 Intermediate Matching .................................... 67
      5.3.1 Kaplun's Extension Theorem ......................... 67
      5.3.2 Study of Examples .................................. 67
      5.3.3 Rule of Intermediate Matching ...................... 69
  5.4 Asymptotic Matching Principle ............................ 71
      5.4.1 Van Dyke's Principle ............................... 71
      5.4.2 Modified Van Dyke's Principle ...................... 72
  5.5 Examples and Counter-Examples ............................ 72
      5.5.1 Example 1 .......................................... 72
      5.5.2 Example 2 .......................................... 73
      5.5.3 Example 3 .......................................... 74
      5.5.4 Example 4 .......................................... 75
  5.6 Discussion of the Matching Principle ..................... 76
      5.6.1 Corrective Boundary Layer .......................... 77
      5.6.2 The MVDP from the Overlap Hypothesis ............... 79
  5.7 Successive Complementary Expansion Method ................ 81
      5.7.1 Principle .......................................... 81
      5.7.2 Equivalence of MVDP and of Regular SCEM ............ 84
  5.8 Applications of SCEM ..................................... 86
      5.8.1 Example 1 .......................................... 86
      5.8.2 Example 2 .......................................... 88
      5.8.3 Example 3 .......................................... 89
  5.9 Conclusion ............................................... 90
  Problems ..................................................... 91

6 Ordinary Differential Equations .............................. 99
  6.1 Example 1 ................................................ 99
      6.1.1 Application of MMAE ............................... 100
      6.1.2 Application of SCEM ............................... 102
  6.2 Example 2 ............................................... 107
      6.2.1 Application of MMAE ............................... 107
      6.2.2 Application of SCEM ............................... 109
      6.2.3 Identification with MMAE Results .................. 111
      6.2.4 Numerical Results ................................. 112
  6.3 Example 3 ............................................... 112
      6.3.1 Application of MMAE ............................... 112
      6.3.2 Application of SCEM ............................... 116
      6.3.3 Identification with MMAE Results .................. 118
  6.4 Stokes-Oseen's Flow Model ............................... 118
      6.4.1 Application of SCEM ............................... 118
      6.4.2 Numerical Results ................................. 120
  6.5 Terrible Problem' ....................................... 121
      6.5.1 Application of SCEM ............................... 122
      6.5.2 Numerical Results ................................. 125
  6.6 Conclusion .............................................. 125
  Problems .................................................... 127

7 High Reynolds Number Flows .................................. 133
  7.1 Boundary Layer Theories ................................. 135
      7.1.1 Prandtl's Boundary Layer .......................... 135
      7.1.2 Triple Deck ....................................... 140
  7.2 Analysis of an Integral Method .......................... 148
      7.2.1 Integral Method ................................... 148
      7.2.2 Direct Mode ....................................... 151
      7.2.3 Inverse Mode ...................................... 152
      7.2.4 Simultaneous Mode ................................. 153
  7.3 Viscous-Inviscid Interaction ............................ 155
  7.4 Conclusion .............................................. 157
  Problems .................................................... 158

8 Interactive Boundary Layer .................................. 169
  8.1 Application of SCEM ..................................... 170
      8.1.1 Outer Approximation ............................... 170
      8.1.2 Determination of a Uniformly Valid
            Approximation ..................................... 171
      8.1.3 Gauge for the Pressure ............................ 173
  8.2 First Order Interactive Boundary Layer .................. 173
      8.2.1 Generalized Boundary Layer Equations .............. 173
      8.2.2 Boundary Conditions ............................... 174
      8.2.3 Estimate of the Remainders of Equations ........... 175
  8.3 Second Order Interactive Boundary Layer ................. 175
      8.3.1 Generalized Boundary Layer Equations .............. 175
      8.3.2 Boundary Conditions ............................... 176
      8.3.3 Estimate of the Remainders of Equations ........... 176
  8.4 Displacement Effect ..................................... 177
  8.5 Reduced Model for an Irrotational External Flow ......... 178
  8.6 Conclusion .............................................. 180
  Problems .................................................... 181

9 Applications of Interactive Boundary Layer Models ........... 185
  9.1 Calculation of a Flow with Separation ................... 186
      9.1.1 Definition of the Flow ............................ 186
      9.1.2 Numerical Method .................................. 186
      9.1.3 Results ........................................... 188
  9.2 Application to Aerodynamic Flows ........................ 190
      9.2.1 Flat Plate of Finite Length ....................... 190
      9.2.2 Airfoils at High Reynolds Numbers ................. 192
  9.3 Influence of a Rotational External Flow ................. 195
      9.3.1 Inviscid Flow ..................................... 195
      9.3.2 Method of Resolution .............................. 197
      9.3.3 Flows Studied ..................................... 200
      9.3.4 Results ........................................... 200
  9.4 Conclusion .............................................. 211
  Problems .................................................... 211

10 Regular Forms of Interactive Boundary Layer ................ 215
   10.1 Second Order Boundary Layer Model ..................... 215
        10.1.1 Second Order Interactive Boundary Layer
               Model .......................................... 217
        10.1.2 Van Dyke's Second Order Model .................. 217
   10.2 Triple Deck Model ..................................... 221
        10.2.1 Flow on a Flat Plate with a Small Hump ......... 221
        10.2.2 Regular Expansions ............................. 223
   10.3 Summary of Approximations of Navier-Stokes
        Equations ............................................. 226
   10.4 Conclusion ............................................ 226
   Problems ................................................... 227

11 Turbulent Boundary Layer ................................... 237
   11.1	Results of the Standard Asymptotic Analysis ........... 237
        11.1.1 Averaged Navier-Stokes Equations ............... 237
        11.1.2 Scales ......................................... 238
        11.1.3 Structure of the Flow .......................... 239
   11.2 Application of SCEM ................................... 243
        11.2.1 First Approximation ............................ 243
        11.2.2 Contribution of the Outer Region of
               the Boundary Layer ............................. 243
        11.2.3 Contribution of the Inner Region of
               the Boundary Layer ............................. 246
   11.3 Interactive Boundary Layer ............................ 249
        11.3.1 First Order Model .............................. 249
        11.3.2 Second Order Model ............................. 250
        11.3.3 Global Model ................................... 250
        11.3.4 Reduced Model for an Irrotational External
               Flow ........................................... 251
   11.4 Approximation of the Boundary Layer: Velocity
        Profile ............................................... 254
        11.4.1 Formulation of the Problem ..................... 254
        11.4.2 Turbulence Model ............................... 256
        11.4.3 Outer Region ................................... 256
        11.4.4 Equation to Solve .............................. 257
        11.4.5 Examples of Results ............................ 258
   11.5 Conclusion ............................................ 260
   Problems ................................................... 260

12 Channel Flow ............................................... 267
   12.1 Formulation of the problem ............................ 267
   12.2 Uniformly Valid Approximation ......................... 270
   12.3 IBL Model for the Lower Wall .......................... 272
   12.4 Global IBL Model ...................................... 274
   12.5 Numerical Solution .................................... 275
        12.5.1 General Method ................................. 275
        12.5.2 Simplified Method for the Pressure ............. 277
   12.6	Application of the Global IBL model ................... 279
        12.6.1 Discussion of the Numerical Procedure .......... 279
        12.6.2 Comparisons with Smith's theory ................ 283
        12.6.3 Comparison with Navier-Stokes Solutions ........ 290
   12.7	Conclusion ............................................ 295
   Problems ................................................... 295

13 Conclusion ................................................. 301

Appendices .................................................... 303

I   Navier-Stokes Equations ................................... 303

II  Elements of Two-Dimensional Linearized Aerodynamics ....... 305
    II.1  Thickness Problem (Non Lifting Case) ................ 306
    II.2  Zero-Thickness Problem (Lifting Case) ............... 307

III Solutions of the Upper Deck of the Triple Deck Theory ..... 309
    III.1 Two-Dimensional Flow ................................ 309
    III.2 Three-Dimensional Flow .............................. 312
          III.2.1 Zero Perturbations at Infinity .............. 313
          III.2.2 Non Zero Cross-Flow Perturbations at
                  Downstream Infinity ......................... 314

IV  Second Order Triple Deck Theory ........................... 319
    IV.1  Main Results ........................................ 319
    IV.2  Global Model for the Main Deck and the Lower Deck ... 325

V   Behaviour of an Asymptotic Expansion ...................... 327
    V.1   Formulation of the Problem .......................... 327
    V.2   Study of the Gauge Functions ........................ 328
    V.3   Study of the Outer Expansion ........................ 330

Solutions of Problems ......................................... 332

References .................................................... 419

Author index .................................................. 427

Subject index ................................................. 428


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:38 2019. Размер: 18,402 bytes.
Посещение N 1714 c 26.04.2010