Asmussen S. Stochastic simulation (New York, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаAsmussen S. Stochastic simulation: Algorithms and analysis / Asmussen S., Glynn P.W. - New York: Springer, 2007. - 476 p. - (Stochastic modelling and applied probability; 57). - ISSN 0172-4568; ISBN 978-0-387-30679-7
 

Оглавление / Contents
 
Preface ......................................................... v

Notation ...................................................... xii

I What This Book Is About ....................................... 1
    1  An Illustrative Example: The Single-Server Queue ......... 1
    2  The Monte Carlo Method ................................... 5
    3  Second Example: Option Pricing ........................... 6
    4  Issues Arising in the Monte Carlo Context ................ 9
    5  Further Examples ........................................ 13
    6  Introductory Exercises .................................. 25


Part A: General Methods and Algorithms ......................... 29

II Generating Random Objects ................................... 30
    1  Uniform Random Variables ................................ 30
    2  Nonuniform Random Variables ............................. 36
    3  Multivariate Random Variables ........................... 49
    4  Simple Stochastic Processes ............................. 59
    5  Further Selected Random Objects ......................... 62
    6  Discrete-Event Systems and GSMPs ........................ 65

III Output Analysis ............................................ 68
    1  Normal Confidence Intervals ............................. 68
    2  Two-Stage and Sequential Procedures ..................... 71
    3  Computing Smooth Functions of Expectations .............. 73
    4  Computing Roots of Equations Defined by Expectations .... 77
    5  Sectioning, Jackknifing, and Bootstrapping .............. 80
    6  Variance / Bias Trade-Off Issues ........................ 86
    7  Multivariate Output Analysis ............................ 88
    8  Small-Sample Theory ..................................... 90
    9  Simulations Driven by Empirical Distributions ........... 91
    10 The Simulation Budget ................................... 93

IV Steady-State Simulation ..................................... 96
    1  Introduction ............................................ 96
    2  Formulas for the Bias and Variance ..................... 102
    3  Variance Estimation for Stationary Processes ........... 104
    4  The Regenerative Method ................................ 105
    5  The Method of Batch Means .............................. 109
    6  Further Refinements .................................... 110
    7  Duality Representations ................................ 118
    8  Perfect Sampling ....................................... 120

V Variance-Reduction Methods .................................. 126
    1  Importance Sampling .................................... 127
    2  Control Variates ....................................... 138
    3  Antithetic Sampling .................................... 144
    4  Conditional Monte Carlo ................................ 145
    5  Splitting .............................................. 147
    6  Common Random Numbers .................................. 149
    7  Stratification ......................................... 150
    8  Indirect Estimation .................................... 155

VI Rare-Event Simulation ...................................... 158
    1  Efficiency Issues ...................................... 158
    2  Examples of Efficient Algorithms: Light Tails .......... 163
    3  Examples of Efficient Algorithms: Heavy Tails .......... 173
    4  Tail Estimation ........................................ 178
    5  Conditioned Limit Theorems ............................. 183
    6  Large-Deviations or Optimal-Path Approach .............. 187
    7  Markov Chains and the h-Transform ...................... 190
    8  Adaptive Importance Sampling via the Cross-Entropy
       Method ................................................. 195
    9  Multilevel Splitting ................................... 201

VII Derivative Estimation ..................................... 206
    1  Finite Differences ..................................... 209
    2  Infinitesimal Perturbation Analysis .................... 214
    3  The Likelihood Ratio Method: Basic Theory .............. 220
    4  The Likelihood Ratio Method: Stochastic Processes ...... 224
    5  Examples and Special Methods ........................... 231

VIII Stochastic Optimization .................................. 242
    1  Introduction ........................................... 242
    2  Stochastic Approximation Algorithms .................... 243
    3  Convergence Analysis ................................... 245
    4  Polyak Ruppert Averaging ............................... 250
    5  Examples ............................................... 253


Part B: Algorithms for Special Models ................ 259

IX Numerical Integration ...................................... 260
    1  Numerical Integration in One Dimension ................. 260
    2  Numerical Integration in Higher Dimensions ............. 263
    3  Quasi-Monte Carlo Integration .......................... 265

X Stochastic Differential Equations ........................... 274
    1  Generalities about Stochastic Process Simulation ....... 274
    2  Brownian Motion ........................................ 276
    3  The Euler Scheme for SDEs .............................. 280
    4  The Milstein and Other Higher-Order Schemes ............ 287
    5  Convergence Orders for SDEs: Proofs .................... 292
    6  Approximate Error Distributions for SDEs ............... 298
    7  Multidimensional SDEs .................................. 300
    8  Reflected Diffusions ................................... 301

XI Gaussian Processes ......................................... 306
    1  Introduction ........................................... 306
    2  Cholesky Factorization. Prediction ..................... 311
    3  Circulant-Embeddings ................................... 314
    4  Spectral Simulation. FFT ............................... 316
    5  Further Algorithms ..................................... 320
    6  Fractional Brownian Motion ............................. 321

XII Lévy Processes ............................................ 325
    1  Introduction ........................................... 325
    2  First Remarks on Simulation ............................ 331
    3  Dealing with the Small Jumps ........................... 334
    4  Series Representations ................................. 338
    5  Subordination .......................................... 343
    6  Variance Reduction ..................................... 344
    7  The Multidimensional Case .............................. 346
    8  Lévy-Driven SDEs ....................................... 348

XIII Markov Chain Monte Carlo Methods ......................... 350
    1  Introduction ........................................... 350
    2  Application Areas ...................................... 352
    3  The Metropolis-Hastings Algorithm ...................... 361
    4  Special Samplers ....................................... 367
    5  The Gibbs Sampler ...................................... 375

XIV Selected Topics and Extended Examples ..................... 381
    1  Randomized Algorithms for Deterministic Optimization ... 381
    2  Resampling and Particle Filtering ...................... 385
    3  Counting and Measuring ................................. 391
    4  MCMC for the Ising Model and Square Ice ................ 395
    5  Exponential Change of Measure in Markov-Modulated
       Models ................................................. 403
    6  Further Examples of Change of Measure .................. 407
    7  Black-Box Algorithms ................................... 416
    8  Perfect Sampling of Regenerative Processes ............. 420
    9  Parallel Simulation .................................... 424
    10 Branching Processes .................................... 426
    11 Importance Sampling for Portfolio VaR .................. 432
    12 Importance Sampling for Dependability Models ........... 435
    13 Special Algorithms for the GI/G/1 Queue ................ 437

Appendix ...................................................... 442
    A1 Standard Distributions ................................. 442
    A2 Some Central Limit Theory .............................. 444
    A3 FFT .................................................... 444
    A4 The EM Algorithm ....................................... 445
    A5 Filtering .............................................. 447
    A6 Itô's Formula .......................................... 448
    A7 Inequalities ........................................... 450
    A8 Integral Formulas ...................................... 450

Bibliography .................................................. 452

Web Links ..................................................... 469

Index ......................................................... 471


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:38 2019. Размер: 12,876 bytes.
Посещение N 1596 c 26.04.2010