Vidhyasekaran P. Fungal pathogenesis in plants and crops (Boca Raton, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаVidhyasekaran P. Fungal pathogenesis in plants and crops: molecular biology and host defense mechanisms. - 2nd ed. - Boca Raton, FL; London: CRC Press, 2008. - 509 p. - (Books in soils, plants, and the environment). - ISBN 0-8493-9867-3
 

Оглавление / Contents
 
Preface ....................................................... xxi

Author ...................................................... xxiii

Chapter 1
Perception and Transduction of Plant Signals in Pathogens ....... 1
1.1 Introduction ................................................ 1
1.2 Signaling and Transduction Systems in "First Touch" and
    Adhesion of Fungal Spores ................................... 1
    1.2.1 First Touch or Initial Contact Triggers
          the Infection Process ................................. 1
    1.2.2 Adhesion or Close Contact Triggers Fungal Infection
          Process ............................................... 3
    1.2.3 Adhesion of Spores due to Hydrophobic Interaction ..... 3
    1.2.4 Adhesion of Spores Is Accompanied by Release of
          Extracellular Material ................................ 4
    1.2.5 Involvement of Cutinases in Spore Adhesion ............ 5
    1.2.6 Some Plant Signals May Be Needed for Adhesion of
          Spores ................................................ 5
1.3 Signaling in Fungal Spore Germination ....................... 6
    1.3.1 Plant Signals Trigger Structural Changes in Spores
          before Germination .................................... 6
    1.3.2 Plant-Surface Signals Trigger Spore Germination ....... 7
    1.3.3 Flavonoids Signaling Spore Germination ................ 8
1.4 Signaling in Differentiation of Germ Tubes into Infection
    Structures .................................................. 8
    1.4.1 Adhesion of Germlings and Infection Structures ........ 8
    1.4.2 Extracellular Matrix in Germling Adhesion ............. 9
    1.4.3 Extracellular Matrix in Appressorial Adhesion ........ 11
    1.4.4 Topographic Signals in Appressorium Formation ........ 11
    1.4.5 Plant-Surface Wax Signals Appressorium Formation ..... 13
    1.4.6 Cutin Monomers as Signal Molecules ................... 14
    1.4.7 Ethylene Signals Appressorium Formation .............. 14
    1.4.8 Fungal Signals in Induction of Appressorium
          Formation ............................................ 15
1.5 Signal Transduction in Fungal Pathogenesis ................. 16
    1.5.1 Transmembrane Receptor for Extracellular Signals ..... 16
    1.5.2 G-Proteins ........................................... 17
    1.5.3 Calcium/Calmodulin-Dependent Signaling ............... 20
    1.5.4 cAMP/Protein Kinase Signaling Pathway ................ 21
    1.5.5 Mitogen-Activated Protein Kinase Signaling
          Cascades ............................................. 24
    1.5.6 Lipid-Induced Protein Kinase Signaling ............... 28
    1.5.7 РАК Signaling ........................................ 28
    1.5.8 Phosphorylation and Dephosphorylation Cascades ....... 29
    1.5.9 P-Type Adenosine Triphosphatase Signaling ............ 29
1.6 Genes Involved in Formation of Infection Structures ........ 30
1.7 Signals in Fungal Infection Process ........................ 32
    1.7.1 Magnaporthe grisea ................................... 32
    1.7.2 Blumeria graminis .................................... 34
    1.7.3 Colletotrichum gloeosporioides ....................... 35
    1.7.4 Ustilago maydis ...................................... 36
    1.7.5 Fusarium oxysporum ................................... 37
1.8 Conclusion ................................................. 37
References ..................................................... 38

Chapter 2
Perception and Transduction of Pathogen Signals in Plants ...... 55
2.1  Introduction .............................................. 55
2.2  What Are Elicitors? ....................................... 56
2.3  Oligosaccharide Elicitors ................................. 57
     2.3.1 Chitooligosaccharide Elicitors ...................... 57
     2.3.2 Chitosan Elicitors .................................. 58
     2.3.3 Oligoglucan Elicitors ............................... 58
     2.3.4 Other Carbohydrate Elicitors ........................ 60
2.4  Protein/Peptide Elicitors ................................. 60
     2.4.1 Elicitins ........................................... 60
     2.4.2 Xylanase Elicitor ................................... 64
     2.4.3 PaNie213 Elicitor .................................... 64
     2.4.4 Nep1 Elicitor ....................................... 64
     2.4.5 NIP1 Elicitor ....................................... 64
     2.4.6 PB90 Elicitor ....................................... 65
2.5  Glycoprotein Elicitors .................................... 65
     2.5.1 Carbohydrate Moiety in the Glycoprotein Elicitor
           May Confer Elicitor Activity ........................ 65
     2.5.2 Protein Moiety in Glycoprotein Elicitors May
           Confer Elicitor Activity ............................ 66
     2.5.3 Functions of Glycoprotein Elicitors ................. 67
2.6  Lipid Elicitors ........................................... 67
     2.6.1 Sphingolipids ....................................... 67
     2.6.2 Arachidonic and Eicosapentaenoic Acids .............. 68
     2.6.3 Ergosterols ......................................... 68
2.7  Toxins as Elicitor Molecules .............................. 69
2.8  Plant Cell Wall-Degrading Enzymes as Elicitors ............ 69
2.9  Race-Specific and Cultivar-Specific Elicitors ............. 70
2.10 Specificity of General Elicitors .......................... 72
2.11 Endogenous Oligogalacturonide Elicitors ................... 73
2.12 Multiple Elicitors May Be Needed to Activate Defense
     Responses ................................................. 74
     2.12.1  Elicitor Complex .................................. 74
     2.12.2  Network of Elicitor Molecules ..................... 74
2.13 Availability of Fungal Elicitors at the Site of Fungal
     Invasion in Plants ........................................ 75
2.14 Receptors for Elicitor Signals in Plant Cell Membrane ..... 76
     2.14.1  Receptor Sites for Binding Oligosaccharide
             Elicitors ......................................... 76
     2.14.2  Receptor Sites for Binding Proteinaceous
             Elicitors ......................................... 77
     2.14.3  Protein Kinases as Receptor Sites ................. 78
     2.14.4  LRR-Type Receptors ................................ 78
     2.14.5  Lectins as Receptors .............................. 79
     2.14.6  Resistance Gene Products as Receptors ............. 79
2.15 Calcium Ion May Act as Second Messenger ................... 79
     2.15.1  Function of Calcium Ion as Second Messenger ....... 79
     2.15.2  Upstream Events of Ca2+ Signaling ................. 81
     2.15.3  Downstream Events of Ca2+ Signaling ............... 82
2.16 Phosphorylation of Proteins as a Component in Signal
     Transduction System ....................................... 83
     2.16.1  Phosphorylation/Dephosphorylation Events .......... 83
     2.16.2  Calcium Ion in Phosphorylation .................... 83
2.17 Mitogen-Activated Protein Kinase Cascades in Signal
     Transduction .............................................. 84
2.18 Phospholipid-Signaling System ............................. 85
     2.18.1  Plant Cell Membrane Phospholipids as Signal
             Molecules ......................................... 85
     2.18.2  Role of Phospholipase A in Phospholipid-
             Signaling System .................................. 86
     2.18.3  Phospholipase С in Phospholipid-Signaling
             System ............................................ 87
     2.18.4  Phospholipase D in Phospholipid-Signaling
             System ............................................ 89
2.19 Anion Channels in Signal Transduction ..................... 90
     2.19.1  Anion Channels in the Signaling System ............ 90
     2.19.2  Upstream Events of Anion Channel-Signaling
             System ............................................ 91
     2.19.3  Downstream of Anion Channel-Signaling System ...... 91
2.20 Extracellular Alkahnization and Cytoplasmic
     Acidification in Signaling System ......................... 91
2.21 Reactive Oxygen Species in Signal Transduction ............ 92
     2.21.1  Oxidative Burst ................................... 92
     2.21.2  Mechanisms of Production of Reactive Oxygen
             Species ........................................... 93
             2.21.2.1 Production of O2- ........................ 93
             2.21.2.2 Production of H2O2 ....................... 94
             2.21.2.3 Production of OH Radical ................ 95
             2.21.2.4 Production of Singlet Oxygen (1O2) ....... 95
     2.21.3  Upstream of ROS Signaling ......................... 96
     2.21.4  Downstream of ROS Signaling ....................... 96
2.22 Nitric Oxide in Signal Transduction ....................... 97
     2.22.1  Increases in Nitric Oxide ......................... 97
     2.22.2  Biosynthesis of Nitric Oxide ...................... 97
     2.22.3  Upstream Events of Nitric Oxide Signaling ......... 98
     2.22.4  Downstream Events of Nitric Oxide Signaling ....... 99
2.23 Salicylic Acid-Signaling System .......................... 100
     2.23.1  Salicylic Acid in Signaling Defense Response in
             Plants ........................................... 100
     2.23.2  Biosynthesis of Salicylic Acid ................... 101
     2.23.3  Signal Perception ................................ 102
     2.23.4  Upstream Signals for Induction of Synthesis of
             Salicylic Acid ................................... 102
     2.23.5  Downstream of Salicylic Acid Signaling ........... 103
     2.23.6  Methyl Salicylate ................................ 104
     2.23.7  Salicylate-Independent Signaling Systems ......... 105
2.24 Jasmonate-Signaling Pathway .............................. 105
     2.24.1  Jasmonate Signaling in Induction of Defense
             Responses ........................................ 105
     2.24.2  Biosynthesis of Jasmonates ....................... 106
     2.24.3  Perception of Jasmonate Signals .................. 108
     2.24.4  Jasmonate-Signaling System May Behave
             Differently in Protecting Plants against
             Various Pathogens ................................ 108
     2.24.5  Induction of Intercellular and Interplant
             Systemic Transduction of Jasmonate Signals ....... 109
     2.24.6  Upstream of Jasmonate Signaling .................. 109
     2.24.7  Downstream of Jasmonate Signaling ................ 109
     2.24.8  Transcriptional Regulation of JA-Responsive
             Genes ............................................ 109
     2.24.9  Jasmonic Acid, Methyl Jasmonate, and Cyclic
             Precursors and Derivatives of Jasmonic Acid as
             Signal Molecules ................................. 110
2.25 Role of Systemin in Signal Transduction System ........... 111
2.26 Ethylene-Dependent Signaling Pathway ..................... 112
     2.26.1  Ethylene-Signaling System Inducing Disease
             Resistance or Susceptibility ..................... 112
     2.26.2  Biosynthesis of Ethylene ......................... 112
     2.26.3  Upstream Signals in Induction of Synthesis of
             Ethylene ......................................... 113
     2.26.4  Ethylene Signal Perception ....................... 114
     2.26.5  Downstream Events in Ethylene Signaling .......... 114
2.27 Abscisic Acid Signaling .................................. 115
2.28 Fatty Acids as Systemic Signal Molecules ................. 116
2.29 Other Signaling Systems .................................. 116
2.30 Network and Interplay of Signaling Pathways .............. 116
     2.30.1  Regulatory Interaction and Coordination among
             Salicylate-, Jasmonate-, and Ethylene-Signaling
             Pathways ......................................... 116
     2.30.2  Coordinated Regulation of Ethylene- and
             Jasmonate-Signaling Pathways ..................... 117
     2.30.3  Interplay between Salicylate-and Jasmonate-
             Signaling Pathways ............................... 118
     2.30.4  Interplay between Salicylate and Ethylene
             Pathways ......................................... 118
     2.30.5  Cross Talk between Salicylate and Jasmonate/
             Ethylene Pathways ................................ 119
     2.30.6  Cross Talk between Abscisic Acid-, Jasmonate-,
             and Ethylene-Dependent Signaling Pathways ........ 120
     2.30.7  Regulatory Switches to Fine-Tune Signaling
             Pathways ......................................... 121
2.31 Induction of Defense Genes May Require Different Signal
     Transduction Systems ..................................... 121
2.32 Perception and Transduction of Pathogen Signals in
     Plants Leading to Susceptibility ......................... 123
     2.32.1  Differential Expression of Signaling System
             Leading to Susceptibility or Resistance .......... 123
     2.32.2  Slower Accumulation of Elicitor-Releasing
             Enzymes in Susceptible Interactions .............. 124
     2.32.3  Susceptible Varieties May Release Less Amount
             of Elicitors from Fungal Pathogen Cell Walls ..... 124
     2.32.4  Delayed Release of Elicitors in Susceptible
             Interactions ..................................... 127
     2.32.5  Elicitor of Compatible Pathogens Induces Less
             Defense-Related Actions than That of
             Incompatible Pathogens ........................... 127
     2.32.6  Degradation of Fungal Elicitors by Plant
             Enzymes in Plant Tissues May Lead to
             Susceptibility ................................... 128
     2.32.7  Fungal Pathogens May Degrade Host Elicitors
             during Susceptible Interactions .................. 129
     2.32.8  Elicitors May Be Released during Pathogenesis
             but May Not Be Active or Less Active in
             Susceptible Plants ............................... 130
     2.32.9  Some Elicitors Do Not Act or Show Little
             Activity on Susceptible Cultivars ................ 132
     2.32.10 Speed of Expression of Signal Transduction
             System May Determine Susceptibility or
             Resistance ....................................... 134
     2.32.11 Reduced Accumulation of Signals May Lead to
             Susceptibility ................................... 134
     2.32.12 Elicitors May Induce Genes Involved in
             Suppression of Defense-Related Genes in
             Susceptible Interactions ......................... 135
     2.32.13 Suppressors Negating Elicitor-Induced Defense
             Responses in Susceptible Interactions ............ 137
     2.32.14 Susceptible Plants May Have Suppressors to
             Suppress Action of Fungal Elicitors .............. 140
     2.32.15 Downregulation of Functions of Elicitors in
             Susceptible Interactions ......................... 140
     2.32.16 Activation of an Unsuitable Signaling System
             for Induction of Defense Responses May Lead to
             Susceptibility ................................... 141
2.33 Signaling Systems in Susceptible Interactions ............ 143
     2.33.1  Abscisic Acid-Signaling System ................... 143
     2.33.2  Ethylene-Signaling System ........................ 144
     2.33.3  Signal Transduction Systems May Induce
             Susceptibility-Related Responses ................. 144
2.34 Conclusion ............................................... 144
References .................................................... 147

Chapter 3
Disease Resistance and Susceptibility Genes in Signal
Perception and Emission ....................................... 193
3.1  Introduction ............................................. 193
3.2  Molecular Structure of Resistance Genes .................. 195
     3.2.1 LRR Domains ........................................ 195
     3.2.2 NBS Domains ........................................ 195
3.3  Classification of Resistance Genes Based on Molecular
     Structure of R Gene-Encoded Proteins ..................... 196
     3.3.1 Resistance Genes Encoding TIR-NBS-LRR Proteins ..... 196
     3.3.2 Resistance Genes Encoding Non-TIR-NBS-LRR
           Proteins ........................................... 197
     3.3.3 Resistance Genes Encoding LRR Proteins Lacking
           NBS Domain ......................................... 199
     3.3.4 Resistance Genes Encoding Proteins Lacking LRR
           Domain ............................................. 200
           3.3.4.1 LRD Proteins ............................... 200
           3.3.4.2 Intracellular Protein Kinases .............. 200
           3.3.4.3 Transmembrane Proteins ..................... 201
           3.3.4.4 Lectin-Туре Proteins ....................... 202
           3.3.4.5 Heat Shock Protein-Like Proteins ........... 202
           3.3.4.6 NADPH-Dependent Reductase-Туре Protein ..... 202
           3.3.4.7 Plant eR Genes Encoding Photorespiratory
                   Peroxisomal Enzyme Proteins ................ 202
3.4  Molecular Structure of Recessive Genes ................... 202
     3.4.1 Barley mlo Gene .................................... 202
     3.4.2 Arabidopsis PMR6 Gene .............................. 203
     3.4.3 Arabidopsis RRS1-R Gene ............................ 203
     3.4.4 Arabidopsis ssi4 Gene .............................. 203
3.5  Perception of Pathogen Signals by Resistance Genes ....... 204
     3.5.1 Functions of Different Domains of R Proteins in
           Pathogen Recognition ............................... 204
           3.5.1.1  LRR Domain ................................ 204
           3.5.1.2  NBS Domain ................................ 204
           3.5.1.3  TIR Domain ................................ 205
           3.5.1.4  CC Domain ................................. 205
           3.5.1.5  C-Terminal Non-LRR Region ................. 206
           3.5.1.6  C-Terminus Transcriptional Activation
                    Domain .................................... 206
           3.5.1.7  Protein Kinase Domain ..................... 206
           3.5.1.8  Transmembrane Domain ...................... 206
           3.5.1.9  Calmodulin-Binding Protein ................ 207
           3.5.1.10 Lectin-Туре Protein ....................... 207
           3.5.1.11 Heat Shock Protein (HSP)-Like Protein ..... 207
     3.5.2 R Gene Product May Act as a Receptor That
           Recognizes an AVR Gene Product ..................... 207
     3.5.3 R Protein May Detect Binding of an AVR Protein to
           a Different Protein in the Plant ................... 208
3.6  Activation of R Protein and Emission of Signals to
     Other Components in the Cell ............................. 209
3.7  Downstream Components of R Gene-Signaling Systems ........ 211
     3.7.1 Regulatory Genes (or Complementary Genes or R
           Gene-Signaling Components) ......................... 211
     3.7.2 EDS1-PAD4 Proteins ................................. 212
     3.7.3 NDR1 Proteins ...................................... 213
     3.7.4 RAR1-SGT1-HSP90 Proteins ........................... 214
           3.7.4.1 RAR1 ....................................... 214
           3.7.4.2 SGT1 ....................................... 215
           3.7.4.3 RAR1/SGT1 Complex .......................... 217
           3.7.4.4 Interaction of RAR1/SGT1 with HSP90 ........ 217
     3.7.5 NDR1 ............................................... 218
     3.7.6 Prf-Pto-Pti Signaling System ....................... 219
     3.7.7 Other Regulatory Genes ............................. 219
3.8  Downstream Signaling Events in R Gene-Mediated
     Resistance ............................................... 221
3.9  Susceptibility Genes in Signal Transduction .............. 222
     3.9.1 Susceptibility Alleles of Resistance Genes ......... 222
     3.9.2 Susceptibility Genes	 .............................. 222
     3.9.3 Resistance Gene May Act as Susceptibility Gene
           against Some Pathogens ............................. 223
     3.9.4 Low Expression of Resistance Genes May Lead to
           Susceptibility ..................................... 224
     3.9.5 Susceptibility Alleles of Resistance Genes May
           Negate the Function of Resistance Genes ............ 224
     3.9.6 Suppressor Genes ................................... 225
3.10 Conclusion ............................................... 225
References .................................................... 227

Chapter 4
Cell Death Programs during Fungal Pathogenesis ................ 243
4.1  Introduction ............................................. 243
4.2  Cell Death in Resistant Interactions ..................... 243
     4.2.1 Programmed Cell Death .............................. 243
     4.2.2 Hypersensitive Cell Death .......................... 244
     4.2.3 Spontaneous Cell Death ............................. 244
     4.2.4 Runaway Cell Death ................................. 245
     4.2.5 Cell Death-Inducing Systemic Acquired Resistance ... 245
4.3  Molecular Mechanism of Induction of Hypersensitive Cell
     Death .................................................... 245
     4.3.1 Mediators, Regulators, and Executioners of Cell
           Death .............................................. 245
     4.3.2 R Gene Signals Involved in Triggering Cell Death ... 246
     4.3.3 Reactive Oxygen Species in Cell Death .............. 246
     4.3.4 Nitric Oxide in Cell Death ......................... 249
     4.3.5 Bax Family of Proteins ............................. 250
     4.3.6 Ion-Conducting Channels ............................ 251
     4.3.7 Function of Mitochondrion in Induction of Cell
           Death .............................................. 251
     4.3.8 Proteolytic Enzymes ................................ 251
           4.3.8.1 Plant Caspases ............................. 251
           4.3.8.2 Vacuolar Processing Enzymes (VPEs) ......... 252
           4.3.8.3 Metacaspases ............................... 252
           4.3.8.4 Other Types of Proteolytic Enzymes ......... 253
     4.3.9 Probable Sequence in Induction of Hypersensitive
           Cell Death ......................................... 253
4.4  Molecular Mechanism of Induction of Spontaneous Cell
     Death .................................................... 253
     4.4.1 Spontaneous Cell Death-Regulating Genes ............ 253
     4.4.2 Salicylic Acid ..................................... 255
     4.4.3 Ethylene ........................................... 255
     4.4.4 Phosphatidic Acid .................................. 255
4.5  Molecular Mechanism of Induction of Runaway Cell Death ... 256
4.6  Role of Cell Death in Induction of Systemic Acquired
     Resistance ............................................... 257
4.7  Susceptibility-Related Cell Death ........................ 258
4.8  Molecular Mechanisms in Induction of Cell Death in
     Susceptible Interactions ................................. 258
     4.8.1 Mediators, Regulators, and Executioners of
           Susceptibility-Related Plant Cell Death ............ 258
     4.8.2 Reactive Oxygen Species ............................ 259
     4.8.3 Proteolytic Enzymes ................................ 259
     4.8.4 Calcium Ion ........................................ 260
     4.8.5 Salicylate, Ethylene, and Jasmonate ................ 260
     4.8.6 Sphingolipid Metabolism ............................ 262
     4.8.7 Extracellular ATP Levels ........................... 262
4.9  What Is the Function of Cell Death in Fungal
     Pathogenesis? ............................................ 262
4.10 Conclusion ............................................... 264
References .................................................... 264

Chapter 5
Cell Wall Degradation and Fortification ....................... 275
5.1  Introduction ............................................. 275
5.2  Structure of Cuticle ..................................... 275
5.3  Penetration of Epicuticular Waxy Layer by Pathogens ...... 276
5.4  Production of Cutinases to Breach Cuticle Barrier ........ 276
5.5  Genes Encoding Cutinases ................................. 277
5.6  Plant Signals Triggering Fungal Cutinases ................ 278
5.7  Importance of Cutinases in Penetration of Cuticle ........ 279
5.8  Cutinases as Virulence/Pathogenicity Factors ............. 280
5.9  Melanins in Fungal Penetration of Cuticle Barrier ........ 281
     5.9.1  Biosynthesis of Melanins .......................... 281
     5.9.2  Melanins Aid in Penetration of Cuticle Barrier
            by Fungal Pathogens ............................... 283
5.10 Degradation of Pectic Polysaccharides .................... 285
     5.10.1 Types of Pectic Polysaccharides ................... 285
     5.10.2 Types of Pectic Enzymes ........................... 285
     5.10.3 Fungal Pathogens Produce Multiple Pectic
            Enzymes ........................................... 286
     5.10.4 Genes Encoding Pectic Enzymes ..................... 287
     5.10.5 Evidences to Show That Pectic Enzymes Aid
            Pathogens to Penetrate Cell Wall .................. 288
            5.10.5.1 Immunocytochemical Evidences ............. 288
            5.10.5.2 Evidences by Showing Protection of
                     the Host by Inhibition of Pectic
                     Enzymes with Specific Antibodies ......... 289
            5.10.5.3 Evidences Showing Protection of Host
                     Plants by Inhibition of Pectic Enzymes
                     with Selective Inhibitors ................ 290
            5.10.5.4 Evidences Using Pectic Enzyme-Deficient
                     Fungal Isolates .......................... 290
            5.10.5.5 Evidences Showing Correlation between
                     the Level of Pectic Enzymes and
                     Virulence ................................ 291
            5.10.5.6 Evidences Showing Enhancement of
                     Virulence by Gene Transfer ............... 291
            5.10.5.7 Evidences Showing Decrease in Virulence
                     by Gene Disruption ....................... 291
     5.10.6 Plant Signals to Induce Pectic Enzymes ............ 291
     5.10.7 Host Cell Wall Differs in Its Susceptibility to
            Pectic Enzymes .................................... 292
     5.10.8 Cell Wall Proteins Modulate Pectic Enzyme
            Activity .......................................... 292
5.11 Pathogens Produce Cellulolytic Enzymes to Breach Cell
     Wall Barrier ............................................. 294
5.12 Fungal Hemicellulases in Plant Cell Wall Degradation ..... 295
5.13 Degradation of Cell Wall Structural Proteins ............. 296
5.14 Requirement of Several Cell Wall-Degrading Enzymes to
     Degrade the Complex-Natured Cell Wall .................... 297
5.15 Production of Suitable Enzymes in Appropriate Sequence
     by Fungal Pathogens ...................................... 297
5.16 Reinforcement of Host Cell Wall during Fungal Invasion ... 298
5.17 Papillae Suppress Fungal Penetration ..................... 298
5.18 Callose Deposition in Cell Wall .......................... 300
5.19 How Do Pathogens Overcome the Papillae and Callose
     Barriers? ................................................ 301
     5.19.1  Pathogen Delays Papillae Formation ............... 301
     5.19.2  Pathogens May Suppress Callose Synthesis in
             Susceptible Interactions ......................... 302
     5.19.3  Pathogens May Be Able to Penetrate the Papillae
             Barrier .......................................... 303
     5.19.4  Pathogens May Degrade Callose by Producing
             β-1,3-Glucanase .................................. 303
5.20 Accumulation of Hydroxyproline-Rich Glycoproteins in
     Plant Cell Walls ......................................... 304
     5.20.1  Host Cell Wall Responds to Fungal Invasion by
             Accumulating HRGP ................................ 304
     5.20.2  Signals Triggering Accumulation of HRGPs ......... 304
     5.20.3  Host Cell Wall Responds to Fungal Invasion by
             Strengthening Its HRGPs by Glycosylation ......... 305
     5.20.4  Insolubilization of HRGPs in Host Cell Wall ...... 305
     5.20.5  Enrichment of HRGPs by Lignin Deposition ......... 305
     5.20.6  Some HRGPs May Immobilize Plant Pathogens ........ 306
     5.20.7  How Does Pathogen Overcome HRGP Barrier? ......... 306
             5.20.7.1 Less Accumulation of HRGPs in
                      Compatible Interactions ................. 306
             5.20.7.2 Pathogen Overcomes HRGP Barrier by
                      Delaying Accumulation of HRGPs in Host
                      Cell Wall ............................... 306
5.21 Cell Wall-Bound Phenolics and Lignins .................... 307
     5.21.1 Fortification of Plant Cell Wall by Phenolics
            and Lignin ........................................ 307
     5.21.2 Biosynthesis of Phenolics and Lignins ............. 308
     5.21.3 Phenolic Deposition in Host CeII Wall in
            Response to Fungal Invasion ....................... 308
     5.21.4 Host Cell Wall Responds to Fungal Invasion by
            Activating Enzymes Involved in Synthesis of
            Wall-Bound Phenolics .............................. 310
     5.21.5 How Does the Pathogen Overcome the Cell
            Wall-Bound Phenolics to Cause Disease? ............ 311
            5.21.5.1 Pathogen Suppresses Accumulation of
                     Phenolics in Host Cell Wall .............. 311
            5.21.5.2 Pathogen Delays Synthesis of Cell
                     Wall-Bound Phenolics ..................... 312
     5.21.6 Lignification during Fungal Pathogenesis .......... 312
            5.21.6.1 Host Cell Wall Responds to Fungal
                     Invasion by Increasing Lignification
                     Process .................................. 312
            5.21.6.2 Pathogen Suppresses Lignin Deposition .... 313
            5.21.6.3 Pathogen Suppresses Enzymes Involved in
                     Lignin Biosynthesis ...................... 314
            5.21.6.4 How Does Pathogen Suppress
                     Lignification in Host Cell Wall? ......... 315
5.22 Suberization during Fungal Pathogenesis .................. 316
     5.22.1 Host Cell Wall Responds to Fungal Invasion by
            Suberization ...................................... 316
     5.22.2 Biosynthesis of Suberin in Pathogen-Inoculated
            Host Cell Wall .................................... 316
     5.22.3 Pathogen Delays Suberin Accumulation .............. 317
     5.22.4 Pathogen May Suppress Suberin-Synthesizing
            Enzymes ........................................... 317
     5.22.5 Pathogens May Penetrate the Suberized Walls of
            Host Cells ........................................ 318
5.23 Deposition of Mineral Elements in Host Cell Wall in
     Response to Fungal Invasion .............................. 318
     5.23.1 Silicon Deposition ................................ 318
     5.23.2 Calcium Deposition in Papillae .................... 318
     5.23.3 Manganese Accumulation in Papillae ................ 319
5.24 Conclusion ............................................... 319
References .................................................... 320

Chapter 6
Induction and Evasion of Pathogenesis-Related Proteins ........ 345
6.1  Introduction ............................................. 345
6.2  Multiplicity of PR Proteins .............................. 346
6.3  Classification of PR Proteins ............................ 347
     6.3.1  PR-1 Proteins ..................................... 347
     6.3.2  PR-2 Proteins ..................................... 348
     6.3.3  PR-3 Proteins ..................................... 349
     6.3.4  PR-4 Proteins ..................................... 350
     6.3.5  PR-5 Proteins ..................................... 351
     6.3.6  PR-6 Proteins ..................................... 351
     6.3.7  PR-7 Proteins ..................................... 352
     6.3.8  PR-8 Proteins ..................................... 352
     6.3.9  PR-9 Proteins ..................................... 352
     6.3.10 PR-10 Proteins .................................... 353
     6.3.11 PR-11 Proteins .................................... 353
     6.3.12 PR-12 Proteins .................................... 353
     6.3.13 PR-13 Proteins .................................... 354
     6.3.14 PR-14 Proteins .................................... 354
     6.3.15 PR-15 Proteins .................................... 354
     6.3.16 PR-16 Proteins .................................... 355
     6.3.17 PR-17 Proteins .................................... 355
     6.3.18 Chitosanases ...................................... 355
6.4  Induction of PR Proteins during Fungal Pathogenesis ...... 355
6.5  Genes Encoding PR Proteins ............................... 356
6.6  Transcription of PR Genes ................................ 357
6.7  Signals Involved in Transcriptional Induction of PR
     Genes .................................................... 358
     6.7.1  Induction of PR Genes by Elicitors ................ 358
     6.7.2  Induction of PR Genes by Salicylic Acid ........... 359
     6.7.3  Induction of PR Genes by Ethylene ................. 360
     6.7.4  Induction of PR Genes by Jasmonic Acid/
            Jasmonate ......................................... 362
     6.7.5  Induction of PR Proteins May Require Different
            Signal Transduction Systems ....................... 363
     6.7.6  Synergistic Effect of Different Signals ........... 364
     6.7.7  Antagonistic Effect of Different Signals .......... 364
6.8  PR Proteins Are Synthesized as Larger Precursors ......... 364
6.9  Secretion of PR Proteins ................................. 365
     6.9.1  Secretory Pathways ................................ 365
     6.9.2  Site of Accumulation of PR Proteins ............... 366
6.10 PR Proteins May Be Involved in Inhibition of Pathogen
     Development .............................................. 367
     6.10.1 Inhibition of Fungal Growth by PR Proteins In
            Vitro ............................................. 367
     6.10.2 Inhibition of Fungal Growth by PR Proteins In
            Vivo .............................................. 369
     6.10.3 Some PR Proteins May Be Involved in Release of
            Elicitor Molecules in Planta ...................... 370
     6.10.4 Some PR Proteins May Be Involved in
            Reinforcement of Cell Wall Structures ............. 370
6.11 PR Proteins May Be Involved in Triggering Disease
     Resistance ............................................... 370
     6.11.1 Demonstration of the Role of PR Proteins in
            Disease Resistance Using Chemical or Biological
            Elicitors ......................................... 370
     6.11.2 Demonstration of Role of PR Proteins in Disease
            Resistance by Inducing Mutation ................... 371
     6.11.3 Demonstration of Role of PR Proteins in Disease
            Resistance by Developing Transgenic Plants ........ 371
     6.11.4 Demonstration of the Role of PR Proteins by
            Developing Transgenic Plants with Antisense
            Suppression of PR Genes ........................... 373
6.12 How Do Pathogens Overcome Fungitoxic PR Proteins of
     the Host? ................................................ 373
     6.12.1 Slower Accumulation of PR Proteins May Enable
            Pathogens to Escape the Antifungal Action of PR
            Proteins .......................................... 373
     6.12.2 Pathogens May Shed Away from Their Cell Wall
            the Substrate for the PR Proteins of Enzymatic
            Nature and Avoid Their Lytic Enzyme Action ........ 379
     6.12.3 Pathogens May Produce Enzymes That Protect Them
            from Fungitoxic Action of PR-3 Proteins ........... 380
     6.12.4 Pathogens May Produce Enzymes to Inhibit
            Activity of Some PR Proteins ...................... 381
     6.12.5 Less Elicitor Is Released from Pathogen's Cell
            Wall to Activate Synthesis of PR Proteins ......... 381
     6.12.6 PR Proteins Are Degraded Quickly in
            the Susceptible Host Tissues ...................... 382
     6.12.7 Site of Accumulation of Some PR Proteins May
            Determine Susceptibility or Resistance ............ 382
     6.12.8 Adaptation of Pathogens to PR Proteins ............ 384
     6.12.9 Some PR Proteins May Not Be Involved in Disease
            Resistance ........................................ 385
6.13 Conclusion ............................................... 385
References .................................................... 386

Chapter 7
Evasion and Detoxification of Secondary Metabolites ........... 411
7.1  Introduction ............................................. 411
7.2  Chemical Structural Classes of Phytoalexins .............. 412
7.3  Biosynthesis of Isoflavonoid Phytoalexins ................ 414
     7.3.1 Phaseollin and Related Compounds ................... 414
     7.3.2 Glyceollins ........................................ 418
     7.3.3 Medicarpin ......................................... 420
     7.3.4 Pisatin ............................................ 423
7.4  Biosynthesis of Flavanone Phytoalexins ................... 424
7.5  Biosynthesis of Coumarin Phytoalexins .................... 424
7.6  Biosynthesis of Stilbene Phytoalexins .................... 426
7.7  Biosynthesis of Terpenoid Phytoalexins ................... 426
7.8  Biosynthesis of Indole-Based Sulfur-Containing
     Phytoalexins ............................................. 430
7.9  Biosynthesis of Alkaloid Phytoalexins .................... 431
7.10 Site of Synthesis of Phytoalexins ........................ 432
7.11 Phytoalexins Are Fungitoxic .............................. 432
7.12 How Do Pathogens Overcome the Antifungal Phytoalexins? ... 433
     7.12.1 Pathogens May Detoxify Phytoalexins ............... 433
     7.12.2 Induction of Phytoalexins May Be Delayed in
            Susceptible Interactions .......................... 436
     7.12.3 Pathogen May Suppress Accumulation of
            Phytoalexins in Susceptible Hosts ................. 438
     7.12.4 Amount of Accumulation of Phytoalexins May Be
            Less in Susceptible Interactions Compared with
            Resistant Interactions ............................ 439
     7.12.5 Highly Toxic Phytoalexins May Not Accumulate in
            Susceptible Interactions .......................... 439
     7.12.6 Some Phytoalexins May Not Be Produced in
            Susceptible Interactions .......................... 439
     7.12.7 Some Phytoalexins May Not Have Any Role in
            Defense Mechanisms of Plants ...................... 440
7.13 Chemical Structural Classes of Phytoanticipins ........... 440
7.14 Phenolics as Phytoanticipins ............................. 440
7.15 Toxicity of Phenolics to Pathogens ....................... 441
7.16 How Does Pathogen Overcome the Antifungal Phenolics? ..... 441
     7.16.1 Pathogen May Degrade Phenolics to Nontoxic
            Products .......................................... 441
     7.16.2 Pathogen May Suppress Increased Synthesis of
            Phenolics in Plants ............................... 443
     7.16.3 Pathogen May Suppress Phenol Biosynthetic
            Enzymes ........................................... 443
     7.16.4 Pathogen May Suppress Phenolic Metabolism by Its
            Suppressor Molecule ............................... 443
     7.16.5 Pathogen May Suppress Phenolic Metabolism by
            Producing Toxins .................................. 443
     7.16.6 Pathogen May Suppress Oxidation of Phenolics by
            Inhibiting Polyphenol Oxidase ..................... 444
     7.16.7 Phenolics Are Fungitoxic but They May Not
            Accumulate to Fungitoxic Level during
            Pathogenesis in Some Plant-Pathogen
            Interactions ...................................... 444
7.17 Saponins as Phytoanticipins .............................. 445
7.18 Glucosinolates as Phytoanticipins ........................ 447
     7.18.1 Biosynthesis of Glucosinolates .................... 447
     7.18.2 Toxicity of Glucosinolates to Fungal Pathogens .... 448
     7.18.3 How Does the Pathogen Overcome Toxicity of
            Glucosinolates? ................................... 448
            7.18.3.1 Concentration of Glucosmolates May Be
                     Less in Susceptible Tissues .............. 448
            7.18.3.2 Glucosinolates May Not Be Involved in
                     Disease Resistance Unless the Tissue Is
                     Damaged .................................. 448
7.19 Cyanogenic Glucosides .................................... 450
7.20 Dienes ................................................... 450
7.21 Conclusion ............................................... 450
References .................................................... 451

Chapter 8
Toxins in Disease Symptom Development ......................... 469
8.1 Introduction .............................................. 469
8.2 Importance of Toxins in Disease Development ............... 471
8.3 Toxins Suppress Host-Defense Mechanisms ................... 472
8.4 Toxins Cause Cell Membrane Dysfunction .................... 473
    8.4.1 Permeability Changes ................................ 473
    8.4.2 Changes in Membrane-Bound ATPases ................... 474
          8.4.2.1 H+-ATPase Is Stimulated ..................... 474
          8.4.2.2 H+-ATPase Is Inhibited ...................... 477
    8.4.3 Inhibition of Calmodulin Activity ................... 477
    8.4.4 Alteration in Membrane Potential .................... 477
    8.4.5 Toxins Form Ion Channels in Plant Cell
          Membranes ........................................... 479
    8.4.6 Modification of Membrane Phospholipids .............. 479
    8.4.7 Toxin-Induced Active Oxygen Species Induce
          Membrane Dysfunction ................................ 480
    8.4.8 Mitochondrial Membrane Dysfunction .................. 481
8.5 How Do Pathogens Induce Membrane Dysfunction Only in
    Susceptible Hosts? ........................................ 483
    8.5.1 Detoxification of Phytotoxins, Which Occurs in
          Resistant Hosts, Does Not Occur in Susceptible
          Hosts ............................................... 483
    8.5.2 Susceptible Tissues May Have Toxin Receptors
          Which May Be Absent in Resistant Tissues ............ 484
    8.5.3 Susceptible Tissues May Be More Sensitive to
          Toxins .............................................. 486
    8.5.4 Specific Protein Synthesized after Toxin
          Exposure May Confer Host Specificity ................ 487
    8.5.5 Proteins of Susceptible Hosts May Enhance
          Potential of Pathogens to Produce Toxins ............ 487
    8.5.6 Sucrose Influx May Have Correlation with
          Sensitivity to Toxin ................................ 487
    8.5.7 Transport of Toxin to Cytoplasm May Occur Only
          in Susceptible Interactions ......................... 488
8.6 Conclusion ................................................ 488
References .................................................... 489

Index ......................................................... 499


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:38 2019. Размер: 48,687 bytes.
Посещение N 1648 c 26.04.2010