PREFACE TO THE FOURTH EDITION .................................. xi
PREFACE TO THE THIRD EDITION .................................. xii
FOREWORD ..................................................... xiii
ACKNOWLEDGEMENTS .............................................. xiv
BIOGRAPHY ...................................................... xv
DISCLAIMER .................................................... xvi
USING THE SOFTWARE AND EXCEL SPREADSHEET PROGRAMS ............ xvii
CHAPTER 0. RULES OF THUMB: SUMMARY ......................... xviii
CHAPTER 1. PROCESS PLANNING, SCHEDULING, AND
FLOWSHEET DESIGN
1.1. Organizational Structure .................................. 1
1.2. Process Design Scope ...................................... 3
1.3. Role of the Process Design Engineer ....................... 3
1.4. Computer-Aided Flowsheeting ............................... 4
1.5. The Sequential Modular Simulation ......................... 6
1.6. The Equation Modular Approach ............................. 9
1.7. Degrees-of-Freedom Modeling ............................... 9
1.8. Isobutane Chemicals (iC4H10) ............................. 10
1.9. Flowsheets - Types ....................................... 15
1.10. Flowsheet Presentation ................................... 16
1.11. General Arrangements Guide ............................... 17
1.12. Computer-Aided Flowsheet Design/Drafting ................. 17
1.13. Operator Training Simulator System ....................... 18
1.14. Flowsheet Symbols ........................................ 19
1.15. Working Schedules ........................................ 39
1.16. Information Checklists ................................... 41
1.17. System of Units .......................................... 56
1.18. System Design Pressures .................................. 56
1.19. Time Planning and Scheduling ............................. 57
1.20. Plant Layout ............................................. 65
1.21. Rules of Thumb Estimating ................................ 67
Nomenclature ............................................. 67
References ............................................... 67
Further Reading .......................................... 68
CHAPTER 2. COST ESTIMATION AND ECONOMIC EVALUATION ............. 69
2.1. Introduction ............................................. 69
2.2. Capital Cost Estimation .................................. 69
2.3. Equipment Cost Estimations by Capacity Ratio Exponents ... 71
2.4. Yearly Cost Indices ...................................... 72
2.5. Factored Cost Estimate ................................... 74
2.6. Detailed Factorial Cost Estimates ........................ 74
2.7. Bare Module Cost for Equipment ........................... 78
2.8. Summary of the Factorial Method .......................... 79
2.9. Computer Cost Estimating ................................. 80
2.10. Project Evaluation ....................................... 80
Nomenclature ............................................ 101
References .............................................. 101
Further Reading ......................................... 102
Websites ................................................ 102
CHAPTER 3. PHYSICAL PROPERTIES OF LIQUIDS AND GASES ........... 103
3.1. Density of Liquids ..................................... 103
3.2. Viscosity of Gas ........................................ 104
3.3. Viscosity of Liquids .................................... 104
3.4. Heat Capacity of Gas .................................... 105
3.5. Heat Capacity of Liquid ................................. 106
3.6. Thermal Conductivity of Gas ............................. 107
3.7. Thermal Conductivity of Liquids and Solids .............. 107
3.8. Surface Tension ......................................... 108
3.9. Vapor Pressure .......................................... 109
3.10. Enthalpy of Vaporization ................................ 110
3.11. Enthalpy of Formation ................................... 111
3.12. Gibbs Energy of Formation ............................... 112
3.13. Solubility in Water Containing Salt ..................... 113
3.14. Solubility in Water as a function of Temperature ........ 114
3.15. Henry's Law Constant for Gases in Water ................. 114
3.16. Solubility of Gases in Water ............................ 115
3.17. Solubility and Henry's Law Constant for Sulfur
Compounds in Water ...................................... 116
3.18. Solubility of Naphthenes in Water ....................... 116
3.19. Solubility and Henry's Law Constant for Nitrogen
Compounds in Water ...................................... 118
3.20. Coefficient of Thermal Expansion of Liquid .............. 119
3.21. Volumetric expansion rate ............................... 120
3.22. Adsorption on Activated Carbon .......................... 120
3.23. Diffusion Coefficients (Diffusivities) .................. 121
3.24. Compressibility Z-Factor of Natural Gases ............... 124
3.25. Generalized Compressibility Z-Factor .................... 125
3.26. Gas Mixtures ............................................ 127
Nomenclature ............................................ 131
Greek Letters ........................................... 131
References .............................................. 131
Further Reading ......................................... 132
CHAPTER 4. FLUID FLOW ......................................... 133
4.1. Introduction ............................................ 133
4.2. Flow of fluids in pipes ................................. 133
4.3. Scope ................................................... 134
4.4. Basis ................................................... 137
4.5. Incompressible Flow ..................................... 137
4.6. Compressible Flow: Vapors and Gases [4] ................. 137
4.7. Important Pressure Level References ..................... 138
4.8. Factors of "Safety" for Design Basis .................... 138
4.9. Pipe, Fittings, and Valves .............................. 138
4.10. Pipe .................................................... 138
4.11. Usual Industry Pipe Sizes and Classes Practice .......... 139
4.12. Background Information (also see Chapter 5) ............. 141
4.13. Reynolds Number, Re (Sometimes used NRE) ................ 143
4.14. Pipe Relative Roughness ................................. 146
4.15. Darcy Friction Factor, f ................................ 147
4.16. Friction Head Loss (Resistance) in Pipe, Fittings,
and Connections ......................................... 154
4.17. Pressure Drop in Fittings, Valves, and Connections ...... 157
4.18. Velocity and Velocity Head .............................. 157
4.19. Equivalent lengths of fittings .......................... 157
4.20. L/D values in laminar region ............................ 157
4.21. Validity of K Values .................................... 158
4.22. Laminar Flow ............................................ 158
4.23. Loss Coefficient ........................................ 161
4.24. Sudden Enlargement or Contraction [2] ................... 167
4.25. Piping Systems .......................................... 168
4.26. Resistance of Valves .................................... 171
4.27. Flow Coefficients for Valves, Cv ....................... 171
4.28. Nozzles and Orifices [4] ................................ 172
4.29. Alternate Calculation Basis for Piping Systems
Friction Head Loss: Liquids ............................. 187
4.30. Equivalent Length Concept for Valves, Fittings and
so on ................................................... 187
4.31. Friction Pressure Drop for Non-viscous Liquids .......... 192
4.32. Estimation of Pressure Loss across Control Valves ....... 196
4.33. The Direct Design of a Control Valve .................... 199
4.34. Friction Loss For Water Flow ............................ 200
4.35. Flow of Water from Open-End Horizontal Pipe ............. 200
4.36. Water Hammer [23] ....................................... 203
4.37. Friction Pressure Drop For Compressible Fluid Flow ...... 203
4.38. Compressible Fluid Flow in Pipes ........................ 206
4.39. Maximum Flow and Pressure Drop .......................... 206
4.40. Sonic Conditions Limiting Flow of Gases and Vapors ...... 206
4.41. The Mach Number, Ma ..................................... 208
4.42. Mathematical Model of Compressible
Isothermal Flow ......................................... 209
4.43. Flow rate through pipeline .............................. 209
4.44. Pipeline pressure drop (ΔP) ............................. 210
4.45. Critical Pressure Ratio ................................. 211
4.46. Adiabatic Flow .......................................... 219
4.47. The Expansion Factor, Y ................................ 219
4.48. Misleading Rules of Thumb for Compressible
Fluid Flow .............................................. 223
4.49. Other Simplified Compressible Flow Methods .............. 225
4.50. Friction Drop for Flow of Vapors, Gases, and
Steam ................................................... 225
4.51. Darcy Rational Relation for Compressible Vapors
and Gases ............................................... 230
4.52. Velocity of Compressible Fluids in Pipe ................. 233
4.53. Alternate Solution to Compressible Flow Problems ........ 234
4.54. Procedure ............................................... 237
4.55. Friction Drop for Compressible Natural Gas in Long
Pipe Lines .............................................. 238
4.56. Panhandle-A Gas Flow Formula [4] ........................ 245
4.57. Modified Panhandle Flow Formula [261 .................... 247
4.58. American Gas Association (AGA) Dry Gas Method ........... 247
4.59. Complex Pipe Systems Handling Natural (or
similar) Gas ............................................ 247
4.60. Two-Phase Liquid and Gas Flow in Process Piping ......... 247
4.61. Flow Patterns ........................................... 248
4.62. Flow Regimes ............................................ 248
4.63. Pressure Drop ........................................... 250
4.64. Erosion-Corrosion ....................................... 252
4.65. Total System Pressure Drop .............................. 253
4.66. Pipe Sizing Rules ....................................... 257
4.67. A Solution For All Two-Phase Problems ................... 258
4.68. Gas - Liquid Two-Phase Vertical Downflow ................ 264
4.69. Pressure Drop in Vacuum Systems ......................... 268
4.70. Low Absolute Pressure Systems for Air [62] .............. 271
4.71. Vacuum for Other Gases and Vapors ....................... 271
4.72 Pipe Sizing for Non-.Newtonian Flow ..................... 273
4.73 Slurry Flow in Process Plant Piping ..................... 273
4.74. Pressure Drop for Flashing Liquids ...................... 274
4.75 Sizing Condensate Return Lines .......................... 276
4.76. Design Procedure Using Sarco Chart [74] ................. 276
4.77 Flow Through Packed Beds ................................ 277
Nomenclature ............................................ 287
References .............................................. 299
Further Reading ......................................... 301
Software for Calculating Pressure Drop .................. 302
CHAPTER 5. PUMPING OF LIQUIDS ................................. 303
5.1. Pump Design Standardization ............................. 304
5.2. Basic Parts of a Centrifugal Pump ....................... 305
5.3. Centrifugal Pump Selection .............................. 308
5.4. Hydraulic Characteristics For Centrifugal Pumps ......... 311
5.5. Suction Head or Suction Lift, hx ........................ 316
5.6. Discharge Head, hd ...................................... 317
5.7. Velocity Head ........................................... 319
5.8. Friction ................................................ 323
5.9. Net Positive suction Head and Pump Suction .............. 323
5.10. Specific Speed .......................................... 330
5.11. Rotative Speed .......................................... 332
5.12. Pumping Systems and Performance ......................... 332
5.13. Power Requirements for Pumping Through
Process Lines ........................................... 335
5.14. Affinity Laws ........................................... 338
5.15. Centrifugal Pump Efficiency ............................. 341
5.16. Effects of Viscosity .................................... 342
5.17. Centrifugal Pump Specifications ......................... 346
5.18. Rotary Pumps ............................................ 352
5.19. Reciprocating Pumps ..................................... 355
5.20. Selection rules-of-thumb ................................ 359
Nomenclature ............................................ 359
References .............................................. 368
Further Reading ......................................... 368
CHAPTER 6. MECHANICAL SEPARATIONS ............................. 371
6.1. Particle Size ........................................... 371
6.2. Preliminary Separator Selection ......................... 371
6.3. Guide to Dust Separator Applications .................... 373
6.4. Guide to liquid-Solid Particle Separators ............... 373
6.5. Gravity Settlers ........................................ 373
6.6. Terminal Velocity ....................................... 373
6.7. Alternate Terminal Velocity Calculation ................. 381
6.8. American Petroleum Institute's Oil Field Separators ..... 382
6.9. Modified Method of Happel and Jordan [22] ............... 386
6.10. Decanter [25] ........................................... 386
6.11. Impingement Separators .................................. 389
6.12. Centrifugal Separators .................................. 400
Nomenclature ............................................ 440
References .............................................. 441
Further Reading ......................................... 442
CHAPTER 7. MIXING OF LIQUIDS .................................. 445
7.1. Mechanical Components ................................... 447
7.2. Impellers ............................................... 447
7.3. Equipment for Agitation ................................. 461
7.4. Flow Patterns ........................................... 465
7.5. Flow visualization ...................................... 467
7.6. Mixing Concepts, Theory, Fundamentals ................... 468
7.7. Flow .................................................... 468
7.8. Power ................................................... 470
7.9. Scale of Agitation, SA .................................. 481
7.10. Mixing Time Correlation ................................. 481
7.11. Shaft ................................................... 483
7.12. Drive and Gears ......................................... 483
7.13. Steady Bearings ......................................... 483
7.14. Draft Tubes ............................................. 484
7.15. Entrainment ............................................. 484
7.16. Batch or Continuous Mixing .............................. 485
l.17. Baffles ................................................. 495
7.18. Blending ................................................ 499
7.19. Emulsions ............................................... 501
7.20. Extraction .............................................. 507
7.21. Gas-Liquid Contacting ................................... 501
7.22. Gas-Liquid Mixing or Dispersion ......................... 507
7.23. Heat transfer: Coils in Tank, Liquid Agitated ........... 501
7.24. Effects of Viscosity on Process Fluid Heat Transfer
Film Coefficient ........................................ 501
7.25. Heat Transfer Area ...................................... 505
7.26. In-line, Static, or Motionless Mixing ................... 506
Nomenclature ............................................ 520
References .............................................. 521
Further Reading ......................................... 522
Websites ................................................ 523
CHAPTER 8. EJECTORS AND MECHANICAL VACUUM SYSTEMS ............ 525
8.1. Ejectors ................................................ 525
8.2. Vacuum Safety ........................................... 525
8.3. Typical Range Performance of Vacuum Producers ........... 525
8.4. Features ................................................ 526
8.5. Types ................................................... 527
8.6. Materials of Construction ............................... 529
8.7. Vacuum Range Guide ...................................... 529
8.8. Pressure Terminology .................................... 532
8.9. Pressure Drop at Low Absolute Pressures ................. 532
8.10. Performance Factors ..................................... 532
8.11. Types of Loads .......................................... 540
8.12. Load Variation .......................................... 557
8.13. Steam and Water Requirements ............................ 552
8.14. Ejector System Specifications ........................... 552
8.15. Ejector Selection Procedure ............................. 554
8.16. Water Jet Ejectors ...................................... 556
8.17. Steam Jet Thermocompressors ............................. 557
8.18. Ejector Control ......................................... 557
8.19. Time Required For System Evacuation ..................... 558
8.20. Alternate Pumpdown to a Vacuum Using a
Mechanical Pump ......................................... 559
8.21. Evaluation with Steam Jets .............................. 560
8.22. Mechanical Vacuum Pumps ................................. 562
8.23. Liquid Ring Vacuum Pumps/Compressor ..................... 562
8.24. Rotary Vane Vacuum Pumps ................................ 565
8.25. Rotary Blowers or Rotary Lobe-Type Blowers .............. 565
8.26. Rotary Piston Pumps ..................................... 569
Nomenclature ............................................ 572
References .............................................. 572
Further Reading ......................................... 573
Websites on Ejectors, Vacuum systems, and Scrubbers ..... 573
CHAPTER 9. PROCESS SAFETY AND PRESSURE-RELIEVING DEVICES ..... 575
9.1. Types of Positive Pressure-relieving Devices (see
manufacturers' catalogs for design details) ............. 575
9.2. Types of Valves/Relief Devices .......................... 577
9.3. Materials of Construction ............................... 582
9.4. General Code Requirements [1] ........................... 582
9.5. Relief Mechanisms ....................................... 587
9.6. Pressure Settings and Design Basis ...................... 588
9.7. Unfired Pressure Vessels Only, But Not Fired or
Unfired Steam Boilers ................................... 593
9.8. Relieving Capacity of Combinations of Safety Relief
Valves and Rupture disks or Non-reclosure devices
(References Asme code, Par-UG-127, U-132) ............... 594
9.9. Establishing Relieving or Set Pressures ................. 596
9.10. Selection and Application ............................... 597
9.11. Capacity Requirements Evaluation for Process Operation
(Non-Fire) .............................................. 597
9.12. Selection Features: Safety, Safety Relief Valves, and
Rupture Disks ........................................... 604
9.13. Calculations of Relieving Areas: Safety and Relief
Valves .................................................. 607
9.14. Standard Pressure-Relief Valves - Relief Area
Discharge Openings ...................................... 607
9.15. Sizing Safety Relief Type Devices for Required Flow
Area at Time of Relief* ................................. 607
9.16. Effects of Two-Phase Vapor-Liquid Mixture
on Relief Valve Capacity ................................ 607
9.17. Sizing for Gases, Vapors, or Liquids for Conventional
Valves with Constant Back pressure Only ................. 607
9.18. Orifice Area Calculations [42] .......................... 610
9.19. Sizing Valves for Liquid Relief: Pressure-Relief
Valves Requiring Capacity Certification [5d] ............ 612
9.20. Sizing Valves for Liquid Relief: Pressure-Relief
Valves not Requiring Capacity Certification [5d] ........ 672
9.21. Reaction Forces ......................................... 676
9.22. Calculations of Orifice Flow Area Using Pressure
Relieving Balanced Bellows Valves, with variable
or constant back pressure ............................... 676
9.23. Sizing Valves for Liquid Expansion (Hydraulic
Expansion of Liquid Filled Systems/Equipment/Piping) .... 620
9.24. Sizing Valves for Subcritical Flow: Gas or Vapor but
not Steam [5d] .......................................... 622
9.25. Emergency Pressure Relief: Fires and Explosions
Rupture Disks ........................................... 625
9.26. External Fires .......................................... 625
9.27. Set Pressures for External Fires ........................ 625
9.28. Heat Absorbed ........................................... 626
9.29. Surface Area Exposed to Fire ............................ 626
9.30. Relief Capacity for Fire Exposure ....................... 628
9.31. Code Requirements for External Fire Conditions .......... 628
9.32. Design Procedure ........................................ 628
9.33. Pressure-Relief Valve Orifice Areas on Vessels
Containing Only Gas, Unwetted Surface ................... 628
9.34. Rupture Disk Sizing Design and Specification ............ 630
9.35. Specifications to Manufacturer .......................... 630
9.36. Size Selection .......................................... 630
9.37. Calculation of Relieving Areas: Rupture Disks for
Non-Explosive Service ................................... 630
9.38. The Manufacturing Range ................................. 631
9.39. Selection of Burst Pressure for Disk, Pb (Table 9-3) .... 631
9.40. Effects of Temperature on Disk .......................... 632
9.41. Rupture Disk Assembly Pressure Drop ..................... 633
9.42. Gases and Vapors: Rupture Disks [5a, Par, 4.8] .......... 633
9.43. API for subsonic flow: gas or vapor (not steam) ......... 635
9.44. Liquids: Rupture disk ................................... 635
9.45. Sizing for Combination of Rupture Disk and Pressure-
Relief Valve in Series Combination ...................... 635
9.46. Pressure-Vacuum Relief for Low Pressure Storage Tanks ... 638
9.47. Basic Venting for Low Pressure Storage Vessels .......... 638
9.48. Non-refrigerated above Ground Tanks; API-Std-2000 ....... 640
9.49. Corrections to Express Miscellaneous Liquids Venting
in Terms of Free Air (14.7 psia and 60° F) .............. 640
9.50. Emergency Vent Equipment ................................ 644
9.51. Refrigerated above Ground and Below Ground Tanks [48] ... 644
9.52. Normal conditions ....................................... 644
9.53. Emergency Venting for Fire Exposure ..................... 646
9.54. Flame Arrestors ......................................... 646
9.55. Pilot-Operated Vent Values .............................. 647
9.56. Explosions .............................................. 647
9.57. Flammability ............................................ 648
9.58. Terminology ............................................. 651
9.59. Mixtures of Flammable Gases ............................. 652
9.60. Pressure and Temperature Effects ........................ 654
9.61. Ignition of Flammable Mixtures .......................... 656
9.62. Aqueous Solutions of Flammable liquids .................. 656
9.63. Blast Pressures ......................................... 656
9.64. Tri-Nitro Toluene (TNT) Equivalence for Explosions ...... 662
9.65. Pressure Piling ......................................... 662
9.66. Blast Scaling ........................................... 662
9.67. Explosion Venting for Gases/Vapors (Not Dusts) .......... 666
9.68. BLEVES (Boiling Liquid Expanding Vapor Explosions) ...... 667
9.69. Liquid Mist Explosions .................................. 668
9.70. Relief Sizing: Explosions of Gases and Vapors ........... 668
9.71. Vent or Relief Area Calculation [I0J for Venting of
Deflagrations in Low-Strength Enclosures ................ 673
9.72. High-Strength Enclosures for Deflagrations .............. 675
9.73. Determination of Relief Areas for Deflagrations of
Gases/Vapors/Mists in High-Strength Enclosures .......... 676
9.74. Dust Explosions ......................................... 678
9.75. Dust Explosion Characteristics .......................... 679
9.76. Evaluating the hazard ................................... 682
9.77. Sizing of Vents Methods ................................. 688
9.78. The VDI Nomograph Methods ............................... 688
9.79. The ST Group Nomograph Method ........................... 689
9.80. Regression Analysis from the Kst Nomographs ............. 689
9.81. Equations to Represent the Nomographs ................... 690
9.82. The Vent Ratio Method ................................... 695
9.83. Extrapolation/Interpolation of Dust Nomographs .......... 697
9.84. Venting of Bins, Silos, and Hoppers ..................... 697
9.85. Sizing guidelines (see [30] for details) ................ 699
9.86. Secondary dust explosions in buildings .................. 699
9.87. Dust Clouds ............................................. 700
9.88. Dust Explosion Severity ................................. 700
9.89. Preventing, Mitigating, and Protection against Dust
Explosions .............................................. 701
9.90. Preventive Explosion Protection ......................... 704
9.91. Explosion Suppression ................................... 704
9.92. Unconfined Vapor Cloud Explosions (UVCE) ................ 706
9.93. Effects of Venting Ducts ................................ 706
9.94. Maximum Distance between Vents .......................... 706
9.95. Runaway Reactions: DIERS ................................ 706
9.96. Hazard evaluation in the chemical process Industries .... 714
9.97. Hazard assessment procedures ............................ 715
9.98. Exotherms ............................................... 715
9.99. Accumulation ............................................ 715
9.100.Thermal runaway chemical reaction hazards ............... 716
9.101.Heat consumed heating the vessel: The ø-factor .......... 716
9.102.Onset temperature ....................................... 717
9.103.Time-to-Maximum Rate .................................... 717
9.104.Maximum reaction temperature ............................ 717
9.105.Vent sizing package ..................................... 717
9.106.Vent Sizing Package 2™(VSP2™) ........................... 718
9.107.Advanced Reactive system screening tool ................. 719
9.108.Two-phase flow relief sizing for runaway reaction ....... 720
9.109.Runaway reactions ....................................... 721
9.110.Vapor-pressure systems .................................. 721
9.111.Gassy Systems ........................................... 722
9.112.Hybrid systems .......................................... 722
9.113.Simplified nomograph method ............................. 722
9.114.Vent sizing methods ..................................... 726
9.115.Vapor-pressure systems .................................. 726
9.116.Fauske's Method ......................................... 728
9.117.Gassy systems ........................................... 728
9.118.Homogeneous two-phase venting until disengagement ....... 729
9.119.Two-phase flow through an orifice ....................... 729
9.120.Conditions of use ....................................... 730
9.121.Discharge system design of the vent pipe ................ 730
9.122.Safe discharge .......................................... 730
9.123.Direct discharge to the atmosphere ...................... 730
9.124.DIERS Final Reports ..................................... 732
9.125.Flares/Flare Stacks ..................................... 732
9.126.Flares .................................................. 733
9.127.Sizing .................................................. 735
9.128.Flame Length [5c] ....................................... 737
9.129.Flame Distortion [5c] Caused by Wind Velocity ........... 737
9.130.Flare Stack Height ...................................... 739
9.131.Purging of Flare Stacks and Vessels/Piping .............. 741
9.132.Static Electricity ...................................... 743
9.133.Compressible flow for discharge piping .................. 744
9.134.Design Equations for Compressible fluid flow for
discharge piping ........................................ 744
9.135.Compressibility factor Z ................................ 746
9.136.Discharge Line Sizing ................................... 747
9.137.Vent Piping ............................................. 747
9.138.Discharge Reactive Force ................................ 747
9.139.A rapid solution for Sizing depressuring lines [5c] ..... 748
9.140.Hazard and Operability (HAZOP) Studies .................. 749
9.141.Study Co-ordination ..................................... 750
9.142.Hazop of a Batch Process ................................ 751
9.143.Limitations of Hazop Studies ............................ 752
9.144.Hazard Analysis (HAZAN) ................................. 752
9.145.Fault Tree Analysis ..................................... 754
9.146.Inherently Safer Plant Design ........................... 755
Glossary ................................................ 758
Acronyms and Abbreviations .............................. 761
References .............................................. 763
Further Reading ......................................... 766
Selected References ..................................... 769
APPENDIX A. A LIST OF ENGINEERING PROCESS FLOW DIAGRAMS AND
PROCESS DATA SHEETS ............................... 771
APPENDIX B. ................................................... 819
APPENDIX C. PHYSICAL PROPERTIES OF LIQUIDS AND GASES .......... 827
APPENDIX D. ................................................... 863
APPENDIX E. ................................................... 935
APPENDIX F. ................................................... 949
APPENDIX G. ANALYTICAL TECHNIQUES ............................. 957
APPENDIX H. NUMERICAL TECHNIQUES .............................. 963
APPENDIX I. SCREENSHOT GUIDE TO ABSOFT COMPILER GRAPHICAL
USER INTERFACE .................................... 977
INDEX ......................................................... 985
|