Preface ........................................................ XI
List of Contributors ......................................... XIII
1. Recent Developments in the Synthesis, Properties and
Assemblies of Nanocrystals .................................. 1
P.J. Thomas and P. O'Brien
1.1. Introduction .......................................... 1
1.2. Spherical Nanocrystals ................................ 1
1.2.1 Semiconductor Nanocrystals ...................... 1
1.2.2 Metal Nanocrystals .............................. 4
1.2.3 Nanocrystals of Metal Oxides .................... 6
1.3. Nanocrystals of Different Shapes ...................... 7
1.3.1 Anisotropic Growth of Semiconductor and Oxide
Nanocrystals .................................... 7
1.3.2 Anisotropic Growth of Metal Nanocrystals ....... 14
1.4. Selective Growth on Nanocrystals ..................... 17
1.5. Properties of Nanocrystals ........................... 18
1.5.1. Electronic and Optical Properties ............ 18
1.5.2. Magnetic Properties .......................... 21
1.6. Ordered Assemblies of Nanocrystals ................... 22
1.6.1. One- and Low-dimensional Arrangements ........ 22
1.6.2. Two-dimensional Arrays ....................... 24
1.6.3. Three-dimensional Superlattices .............. 26
1.6.4. Colloidal Crystals ........................... 29
1.7. Applications ......................................... 30
1.7.1. Optical and Electro-optical Devices .......... 30
1.7.2. Nanocrystal-based Optical Detection and
Related Devices .............................. 31
1.7.3. Nanocrystals as Fluorescent Tags ............. 33
1.7.4. Biomedical Applications of Oxide
Nanoparticles ................................ 33
1.7.5. Nanoelectronics and Nanoscalar Electronic
Devices ...................................... 34
1.8. Conclusions .......................................... 35
References ........................................... 36
2. Nanotubes and Nanowires: Recent Developments ............... 45
S.R.С. Vivekchand, A. Govindaraj, and C.N.R. Rao
2.1. Introduction ......................................... 45
2.2. Carbon Nanotubes ..................................... 45
2.2.1. Synthesis .................................... 45
2.2.2. Purification ................................. 50
2.2.3. Functionalization and Solubilization ......... 54
2.2.4. Properties and Applications .................. 60
2.2.4.1 Optical, Electrical and Other
Properties ........................... 60
2.2.4.2 Phase Transitions, Mechanical
Properties, and Fluid Mechanics ...... 66
2.2.4.3 Energy Storage and Conversion ........ 68
2.2.4.4 Chemical Sensors ..................... 68
2.2.5. Biochemical and Biomedical Aspects ........... 69
2.2.6. Nanocomposites ............................... 71
2.2.7. Transistors and Devices ...................... 72
2.3. Inorganic Nanotubes .................................. 75
2.3.1. Synthesis .................................... 75
2.3.2. Solubilization and Functionalization ......... 77
2.3.3. Properties and Applications .................. 79
2.4. Inorganic Nanowires .................................. 79
2.4.1. Synthesis .................................... 79
2.4.2. Self Assembly and Functionalization .......... 90
2.4.3. Coaxial Nanowires and Coatings on
Nanowires .................................... 92
2.4.4. Optical Properties ........................... 92
2.4.5. Electrical and Magnetic Properties ........... 97
2.4.6. Some Chemical Aspects and Sensor
Applications ................................ 100
2.4.7. Mechanical Properties ....................... 101
2.4.8. Transistors and Devices ..................... 102
2.4.9. Biological Aspects .......................... 103
References .......................................... 104
3. Nonaqueous Sol-Cel Routes to Nanocrystalline Metal
Oxides .................................................... 119
M. Niederberger and M. Antonietti
3.1. Overview ............................................ 119
3.2. Introduction ........................................ 119
3.3. Short Introduction to Aqueous and Nonaqueous
Sol-Gel Chemistry ................................... 120
3.4. Nonaqueous Sol-Gel Routes to Metal Oxide
Nanoparticles ....................................... 121
3.4.1. Surfactant-controlled Synthesis of Metal
Oxide Nanoparticles ......................... 121
3.5. Solvent-controlled Synthesis of Metal Oxide
Nanoparticles ....................................... 127
3.5.1. Introduction ................................ 127
3.5.2. Reaction of Metal Halides with Alcohols ..... 127
3.5.3. Reaction of Metal Alkoxides with Alcohols ... 130
3.5.4. Reaction of Metal Alkoxides with Ketones
and Aldehydes ............................... 131
3.5.5. Reaction of Metal Acetylacetonates with
Various Organic Solvents .................... 132
3.6. Selected Reaction Mechanisms ........................ 133
3.7. Summary and Outlook ................................. 134
References .......................................... 135
4. Growth of Nanocrystals in Solution ........................ 139
R. Viswanatha and D.D. Sarma
4.1. Introduction ........................................ 139
4.2. Theoretical Aspects ................................. 140
4.2.1. Theory of Nucleation ........................ 140
4.2.2. Mechanism of Growth ......................... 141
4.2.2.1. Diffusion Limited Growth:
Lifshitz-Slyozov-Wagner (LSW)
Theory and Post-LSW Theory ........ 143
4.2.2.2. Reaction-limited Growth ........... 147
4.2.2.3. Mixed Diffusion-Reaction
Control ........................... 148
4.3. Experimental Investigations ......................... 151
4.3.1. Au Nanocrystals ............................. 153
4.3.2. ZnO Nanocrystals ............................ 154
4.3.3. Effect of Capping Agents on Growth
Kinetics .................................... 160
4.3.3.1. Effect of Oleic Acid on the
Growth of CdSe Nanocrystals ....... 161
4.3.3.2. PVP as a Capping Agent in the
Growth of ZnO Nanocrystals ........ 163
4.3.3.3. Effect of Adsorption of Thiols
on ZnO Growth Kinetics ............ 166
4.4. Concluding Remarks .................................. 167
References .......................................... 168
5. Peptide Nanomaterials: Self-assembling Peptides as
Building Blocks for Novel Materials ....................... 171
M. Reches and E. Gazit
5.1. Overview ............................................ 171
5.2. Introduction ........................................ 171
5.3. Cyclic Peptide-based Nanostructures ................. 172
5.4. Linear Peptide-based Nanostructures ................. 174
5.5. Amyloid Fibrils as Bio-inspired Material: The Use
of Natural Amyloid and Peptide Fragments ............ 177
5.6. From Amyloid Structures to Peptide Nanostructures ... 178
5.7. Bioinspired Peptide-based Composite Nanomaterials ... 180
5.8. Prospects ........................................... 180
References .......................................... 181
6. Surface Plasmon Resonances in Nanostructured Materials .... 185
K.G. Thomas
6.1. Introduction to Surface Plasmons .................... 185
6.1.1. Propagating Surface Plasmons ............... 186
6.1.2. Localized Surface Plasmons .................. 189
6.2. Tuning the Surface Plasmon Oscillations ............. 190
6.2.1. Size of Nanoparticle ........................ 190
6.2.2. Shape of Nanoparticle ....................... 191
6.2.3. Dielectric Environment ...................... 194
6.3. Excitation of Localized Surface Plasmons ............ 196
6.3.1. Multipole Resonances ........................ 197
6.3.2. Absorption vs. Scattering ................... 200
6.4. Plasmon Coupling in Higher Order Nanostructures ..... 204
6.4.1. Assembly of Nanospheres ..................... 204
6.4.2. Assembly of Nanorods ........................ 208
6.5. Summary and Outlook ................................. 215
References .......................................... 216
7. Applications of Nanostructured Hybrid Materials for
Supercapacitors ........................................... 219
A.V. Murugan and K. Vijayamohanan
7.1. Overview ............................................ 219
7.2. Introduction ........................................ 219
7.3. Nanostructured Hybrid Materials ..................... 220
7.4. Electrochemical Energy Storage ...................... 222
7.5. Electrochemical Capacitors .......................... 223
7.5.1. Electrochemical Double Layer Capacitor vs.
Conventional Capacitor ...................... 225
7.5.2. Origin of Enhanced Capacitance .............. 226
7.6. Electrode Materials for Supercapacitors ............. 229
7.6.1. Nanostructured Transition Metal Oxides ...... 229
7.6.2. Nanostructured Conducting Polymers .......... 230
7.6.3. Carbon Nanotubes and Related Carbonaceous
Materials ................................... 231
7.7. Hybrid Nanostructured Materials ..................... 234
7.7.1. Conducting Polymer-Transition Metal Oxide
Nanohybrids ................................. 235
7.7.2. Conducting Polymer-Carbon Nanotube
Hybrids ..................................... 237
7.7.3. Transition Metal Oxides-Carbon Nanotube
Hybrids ..................................... 238
7.8. Hybrid Nanostructured Materials as Electrolytes
for Super Capacitors ................................ 241
7.8.1. Nanostructured Polymer Composite
Electrolytes ................................ 242
7.8.2. Ionic Liquids as Supercapacitor
Electrolytes ................................ 242
7.9. Possible Limitations of Hybrid Materials for
Supercapacitors ..................................... 243
7.10. Conclusions and Perspectives ........................ 244
References .......................................... 245
8. Dendrimers and Their Use as Nanoscale Sensors ............. 249
N.Jayaraman
8.1. Introduction ........................................ 249
8.2. Synthetic Methods ................................... 250
8.3. Macromolecular Properties ........................... 262
8.3.1. Molecular Modeling and Intrinsic
Viscosity Studies ........................... 262
8.3.2. Fluorescence Properties ..................... 264
8.3.3. Endo- and Exo-Receptor Properties ........... 265
8.4. Chemical Sensors with Dendrimers .................... 267
8.4.1. Vapor Sensing ............................... 267
8.4.2. Sensing Organic Amines and Acids ............ 270
8.4.3. Vapoconductivity ............................ 270
8.4.4. Sensing CO and C02 .......................... 271
8.4.5. Gas and Vapor Sensing in Solution ........... 272
8.4.6. Chiral Sensing of Asymmetric Molecules ...... 275
8.4.7. Fluorescence Labeled Dendrimers and
Detection of Metal Cations .................. 277
8.4.8. Anion Sensing ............................... 279
8.5. Dendrimer-based Biosensors .......................... 281
8.5.1. Acetylcholinesterase Biosensor .............. 281
8.5.2. Dendrimers as Cell Capture Agents ........... 282
8.5.3. Dendrimers as a Surface Plasmon Resonance
Sensor Surface .............................. 283
8.5.4. Layer-by-Layer Assembly Using Dendrimers
and Electrocatalysis ........................ 283
8.5.5. SAM-Dendrimer Conjugates for Biomolecular
Sensing ..................................... 284
8.5.6. Dendrimer-based Calorimetric Biosensors ..... 288
8.5.7. Dendrimer-based Glucose Sensors ............. 289
8.6. Conclusion and Outlook .............................. 292
References .......................................... 292
9. Molecular Approaches in Organic/Polymeric Field-effect
Transistors ............................................... 299
K.S. Narayan and S. Dutta
9.1. Introduction ........................................ 299
9.2. Device Operations and Electrical Characterization ... 300
9.3. Device Fabrication .................................. 301
9.3.1. Substrate Treatment Methods ................. 304
9.3.2. Electrode Materials ......................... 305
9.4. Progress in Electrical Performance .................. 306
9.5. Progress in p-Channel OFETs ......................... 306
9.6. Progress in n-Channel OFET .......................... 309
9.7. Progress in Ambipolar OFET .......................... 310
9.8. PhotoPFETs .......................................... 311
9.9. Photoeffects in Semiconducting Polymer Dispersed
Single Wall Carbon Nanotube Transistors ............. 313
9.10. Recent Approaches in Assembling Devices ............. 314
References .......................................... 316
10. Supramolecular Approaches to Molecular Machines ........... 319
M.C. Grossel
10.1. Introduction ........................................ 319
10.2. Catenanes and Rotaxanes ............................. 320
10.2.1. Synthetic Routes to Catenanes and
Rotaxanes ................................... 321
10.2.2. Aromatic π-π Association Routes to
Catenanes and Rotaxanes ..................... 322
10.2.2.1. Preparation and Properties of
[2]-Catenanes ..................... 322
10.2.2.2. Multiple Catenanes ................ 323
10.2.2.3. Switchable Catenanes .............. 324
10.2.2.4. Other Synthetic Routes to
Paraquat-based Catenanes .......... 326
10.2.2.5. Rotaxane Synthesis ................ 328
10.2.2.6. Switchable Catenanes .............. 328
10.2.2.7. Neutral Catenane Assembly ......... 329
10.2.3. Ion Templating .............................. 329
10.2.3.1. Approaches to Redox-switchable
Catenanes and Rotaxanes ........... 329
10.2.3.2. Making More Complex Structures .... 332
10.2.3.3. Routes to [n]-Rotaxanes using
Olefin Metathesis - Molecular
Barcoding ......................... 333
10.2.3.4. Anion-templating .................. 335
10.2.3.5. Other Approaches to Ion-
templating ........................ 337
10.2.4. Hydrogen-bonded Assembly of Catenane,
Rotaxanes, and Knots ........................ 338
10.2.4.1. Catenane and Knotane Synthesis .... 338
10.2.4.2. Routes to Functional Catenanes
and Rotaxanes ..................... 339
10.2.4.3. Catenanes and Rotaxanes Derived
from Dialkyl Ammonium Salts ....... 346
10.2.5. Cyclodextrin-based Rotaxanes ................ 348
10.2.5.1. Controlling Motion ................ 349
10.3. Molecular Logic Gates ............................... 349
10.4. Conclusions ......................................... 352
References .......................................... 352
11. Nanoscale Electronic Inhomogeneities in Complex Oxides .... 357
V.B. Shenoy, H.R. Krishnamurthy, and T.V.
Ramakrishnan
11.1. Introduction ........................................ 357
11.2. Electronic Inhomogeneities - Experimental
Evidence ............................................ 358
11.3. Theoretical Approaches to Electronic
Inhomogeneities ..................................... 364
11.4. The lb Model for Manganites ......................... 366
11.5. The Extended lb Model and Effects of Long-range
Coulomb Interactions ................................ 370
11.6. Conclusion .......................................... 381
References .......................................... 382
Index ......................................................... 385
|