Biographies .................................................. viii
Introduction ................................................ 1
1. Visualizing in Mathematics ................................. 22
2. Cognition of Structure ..................................... 43
3. Diagram-Based Geometric Practice ........................... 65
4. The Euclidean Diagram (1995) ............................... 80
5. Mathematical Explanation: Why it Matters .................. 134
6. Beyond Unification ........................................ 151
7. Purity as an Ideal of Proof ............................... 179
8. Reflections on the Purity of Method in Hilbert's
Grundlagen der Geometrie .................................. 198
9. Mathematical Concepts and Definitions ..................... 256
10. Mathematical Concepts: Fruitfulncss and Naturalness ....... 276
11. Computers in Mathematical Inquiry ......................... 302
12. Understanding Proofs ...................................... 317
13. What Structuralism Achieves ............................... 354
14. 'There is No Ontology Here': Visual and Structural
Geometry in Arithmetic .................................... 370
15. The Boundary Between Mathematics and Physics .............. 407
16. Mathematics and Physics: Strategies of Assimilation ....... 417
Index of Names ................................................ 441
|