Zeytounian R. Theory and applications of viscous fluid flows (Berlin, 2004). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаZeytounian R. Theory and applications of viscous fluid flows. - Berlin; London: Springer, 2004. - 488 p. - ISBN 3-540-44013-5
 

Оглавление / Contents
 
Introduction .................................................... 1

1 Navier-Stokes-Fourier Exact Model ............................ 11
  1.1 The Transport Theorem .................................... 11
  1.2 The Equation of Continuity ............................... 12
  1.3 The Cauchy Equation of Motion ............................ 12
  1.4 The Constitutive Equations of a Viscous Fluid ............ 13
      1.4.1 Stokes's Four Postulates: Stokesian Fluid .......... 14
      1.4.2 Classical Linear Viscosity Theory: Newtonian
            Fluid .............................................. 15
  1.5 The Energy Equation and Fourier's Law .................... 17
      1.5.1 The Total Energy Equation .......................... 17
      1.5.2 Heat Conduction and Fourier's Law .................. 18
  1.6 The Navier-Stokes-Fourier Equations ...................... 19
      1.6.1 The NSF Equation for an Ideal Gas when Cv and Cp
            are Constants ...................................... 20
      1.6.2 Dimensionless NSF Equations ........................ 21
      1.6.3 Reduced Dimensionless Parameters ................... 22
  1.7 Conditions for Unsteady-State NSF Equations .............. 25
      1.7.1 The Problem of Initial Conditions .................. 26
      1.7.2 Boundary Conditions ................................ 28

2 Some Features and Various Forms of NSF Equations ............. 35
  2.1 Isentropicity, Polytropic Gas, Barotropic Motion, and
      Incompressibility ........................................ 35
      2.1.1 NS Equations ....................................... 35
      2.1.2 Navier System ...................................... 36
      2.1.3 Navier System with Time-Dependent Density .......... 37
      2.1.4 Fourier Equation ................................... 38
  2.2 Some Interesting Issues in Navier Incompressible Fluid
      Flow ..................................................... 39
      2.2.1 The Pressure Poisson Equation ...................... 41
      2.2.2 ψNωN and uNωN Formulations .................... 42
      2.2.3 The Omnipotence of the Incompressibility
            Constraint ......................................... 43
      2.2.4 A First Statement of a Well-Posed Initial,
            Boundary-Value Problem (IBVP) for Navier
            Equations .......................................... 46
      2.2.5 Cauchy Formula for Vorticity ....................... 47
      2.2.6 The Navier Equations as an Evolutionary Equation
            for Perturbations .................................. 48
  2.3 From NSF to Hyposonic and Oberbeck-Boussinesq (OB)
      Equations ................................................ 50
      2.3.1 Model Equations for Hyposonic Fluid Flows .......... 50
      2.3.2 The Oberbeck-Boussinesq Model Equations ............ 52

3 Some Simple Examples of Navier, NS and NSF Viscous Fluid
  Flows ........................................................ 57
  3.1 Plane Poiseuille Flow and the Orr-Sommerfeld Equation .... 57
      3.1.1 The Orr-Sommerfeld Equation ........................ 58
      3.1.2 A Double-Scale Technique for Resolving
            the Orr-Sommerfeld Equation ........................ 60
  3.2 Steady Flow Through an Arbitrary Cylinder under
      Pressure ................................................. 61
      3.2.1 The Case of a Circular Cylinder .................... 62
      3.2.2 The Case of an Annular Region Between Concentric
            Cylinders .......................................... 63
      3.2.3 The Case of a Cylinder of Arbitrary Section ........ 63
  3.3 Steady-State Couette Flow Between Cylinders in Relative
      Motion ................................................... 64
      3.3.1 The Classic Taylor Problem ......................... 65
      3.3.2 The Taylor Number .................................. 66
  3.4 The Bénard Linear Problem and Thermal Instability ........ 68
  3.5 The Bénard Linear Problem with a Free Surface and
      the Marangoni Effect ..................................... 71
      3.5.1 The Case when the Neutral State is Stationary ...... 73
      3.5.2 Free-Surface Deformation ........................... 75
  3.6 Flow due to a Rotating Disc .............................. 75
      3.6.1 Small Values of ζ .................................. 77
      3.6.2 Large Values of ζ .................................. 77
      3.6.3 Joining (Matching) ................................. 78
  3.7 One-Dimensional Unsteady-State NSF Equations and
      the Rayleigh Problem ..................................... 78
      3.7.1 Small M2 Solution - Close to the Flat Plate but
            far from the Initial Time .......................... 81
      3.7.2 Small M2 Solution - Far from a Flat Plate .......... 83
      3.7.3 Small M2 Solution - Close to the Initial Time ...... 86
  3.8 Complementary Remarks .................................... 87

4 The Limit of Very Large Reynolds Numbers ..................... 89
  4.1 Introduction ............................................. 89
  4.2 Classical Hierarchical Boundary-Layer Concept and
      Regular Coupling ......................................... 93
      4.2.1 A 2-D Steady-State Navier Equation for the Stream
            Function ........................................... 93
      4.2.2 A Local Form of the 2-D Steady-State Navier
            Equation for the Stream Function ................... 94
      4.2.3 A Large Reynolds Number and "Principal" and
            "Local" Approximations ............................. 94
      4.2.4 Matching ........................................... 96
      4.2.5 The Prandtl-Blasius and Blasius BL Problems ........ 97
  4.3 Asymptotic Structure of Unsteady-State NSF Equations
      at Re >> 1 .............................................. 103
      4.3.1 Four Significant Degeneracies of NSF Equations .... 105
      4.3.2 Formulation of a Simplified Initial
            Boundary-Value Problem for the NSF Full
            Unsteady-State Equations .......................... 108
      4.3.3 Various Facets of Large Reynolds Number
            Unsteady-State Flow ............................... 109
      4.3.4 The Two Adjustment Problems ....................... 114
  4.4 The Triple-Deck Concept and Singular Interactive
      Coupling ................................................ 118
      4.4.1 The Triple-Deck Theory in 2-D Steady-State
            Navier Flow ....................................... 120
  4.5 Complementary Remarks ................................... 126
      4.5.1 Three-Dimensional Boundary-Layer Equations ........ 130
      4.5.2 Unsteady-State Incompressible Boundary-Layer
            Formulation ....................................... 137
      4.5.3 The Inviscid Limit: Some Mathematical Results ..... 140
      4.5.4 Rigorous Results for the Boundary-Layer Theory .... 144

5 The Limit of Very Low Reynolds Numbers ...................... 145
  5.1 Large Viscosity Limits and Stokes and Oseen Equations ... 145
      5.1.1 Steady-State Stokes Equation ...................... 145
      5.1.2 Unsteady-State Oseen Equation ..................... 146
      5.1.3 Unsteady-State Stokes and Steady-State Oseen
            Equations ......................................... 147
      5.1.4 Unsteady-State Matched Stokes-Oseen Solution
            at Re << 1 for the Flow Past a Sphere ............. 147
  5.2 Low Reynolds Number Flow due to an Impulsively Started
      Circular Cylinder ....................................... 149
      5.2.1 Formulation of the Steady-State Problem ........... 150
      5.2.2 The Unsteady-State Problem ........................ 152
  5.3 Compressible Flow ....................................... 153
      5.3.1 The Stokes Limiting Case and Steady-State
            Compressible Stokes Equations ..................... 154
      5.3.2 The Oseen Limiting Case and Steady-State
            Compressible Oseen Equations ...................... 155
  5.4 Film Flow on a Rotating Disc: Asymptotic Analysis for
            Small Re .......................................... 158
      5.4.1 Solution for Small Re << 1: Long-Time Scale
            Analysis .......................................... 159
      5.4.2 Solution for Small Re << 1: Short-Time Scale
            Analysis .......................................... 160
  5.5 Some Rigorous Mathematical Results ...................... 164

6 Incompressible Limit: Low Mach Number Asymptotics ........... 165
  6.1 Introduction ............................................ 165
  6.2 Navier-Fourier Asymptotic Model ......................... 168
      6.2.1 The Initialization Problem and Equations of
            Acoustics ......................................... 171
      6.2.2 The Fourier Model ................................. 175
      6.2.3 Influence of Weak Compressibility:
            Second-Order Equations for u and π ................ 178
      6.2.4 Concluding Remarks ................................ 179
  6.3 Compressible Low Mach Number Models ..................... 181
      6.3.1 Hyposonic Model for Flow in a Bounded Cavity ...... 181
      6.3.2 Large Channel Aspect Ratio, Low Mach Number,
            Compressible Flow ................................. 183
  6.4 Viscous Nonadiabatic Boussinesq Equations ............... 184
      6.4.1 The Basic State ................................... 184
      6.4.2 Asymptotic Derivation of Viscous, Nonadiabatic
            Boussinesq Equations .............................. 186
  6.5 Some Comments ........................................... 187

7 Some Viscous Fluid Motions and Problems ..................... 191
  7.1 Oscillatory Viscous Incompressible Flow ................. 191
      7.1.1 Acoustic Streaming Effect ......................... 191
      7.1.2 Study of the Steady-State Streaming Phenomenon .... 196
      7.1.3 The Role of Parameters αRe = Res and Re/α = β2 .... 198
      7.1.4 Other Examples of Viscous Oscillatory Flow ........ 202
  7.2 Unsteady-State Viscous, Incompressible Flow past
      a Rotating and Translating Cylinder ..................... 203
      7.2.1 Formulation of the Governing Problem .............. 203
      7.2.2 Method of Solution ................................ 204
      7.2.3 Determination of the Initial Flow ................. 205
      7.2.4 Results of Calculations and Comparison with the
            Visualization of Coutanceau and Ménard (1985) ..... 206
      7.2.5 A Short Comment ................................... 207
  7.3 Ekman and Stewartson Layers ............................. 208
      7.3.1 General Equations and Boundary Conditions ......... 210
      7.3.2 The Ekman Layer ................................... 211
      7.3.3 The Stewartson Layer .............................. 211
      7.3.4 The Inner, Outer, and Upper Regions ............... 213
      7.3.5 Comments .......................................... 214
  7.4 Low Reynolds Number Flows: Further Investigations ....... 215
      7.4.1 Unsteady-State Adjustment to the Stokes Model in
            a Bounded Deformable Cavity Ω(t) .................. 215
      7.4.2 On the Wake in Low Reynolds Number Flow ........... 218
      7.4.3 Oscillatory Disturbances as Admissible Solutions
            and their Possible Relationship to
            the Von Karman Sheet Phenomenon ................... 220
      7.4.4 Some References ................................... 223
  7.5 The Bénard-Marangoni Problem: An Alternative ............ 224
      7.5.1 Dimensionless Dominant Equations .................. 226
      7.5.2 Dimensionless Dominant Boundary Conditions ........ 227
      7.5.3 The Rayleigh-Bénard (RB) Thermal Shallow
            Convection Problem ................................ 229
      7.5.4 The Bénard-Marangoni (BM) Problem ................. 231
  7.6 Some Aspects of Nonadiabatic Viscous Atmospheric Flow ... 233
      7.6.1 The L-SSHV Equations .............................. 233
      7.6.2 The Tangent HV (THV) Equations .................... 238
      7.6.3 The Quasi-Geostrophic Model ....................... 240
  7.7 Miscellaneous Topics .................................... 246
      7.7.1 The Entrainment of a Viscous Fluid in
            a Two-Dimensional Cavity .......................... 246
      7.7.2 Unsteady-State Boundary Layers .................... 253
      7.7.3 Various Topics Related to Boundary-Layer
            Equations ......................................... 258
      7.7.4 More on the Triple-Deck Theory .................... 260
      7.7.5 Some Problems Related to Navier Equations for
            an Incompressible Viscous Fluid ................... 266
      7.7.6 Low and Large Prandtl Number Flow ................. 272
      7.7.7 A final comment ................................... 275

8 Some Aspects of a Mathematically Rigorous Theory ............ 277
  8.1 Classical, Weak, and Strong Solutions of the Navier
      Equations ............................................... 278
  8.2 Galerkin Approximations and Weak Solutions of
      the Navier Equations .................................... 283
      8.2.1 Some Comments and Bibliographical Notes ........... 287
  8.3 Rigorous Mathematical Results for Navier
      Incompressible and Viscous Fluid Flows .................. 289
      8.3.1 Navier Equations in an Unbounded Domain ........... 295
      8.3.2 Some Recent Rigorous Results ...................... 298
  8.4 Rigorous Mathematical Results for Compressible and
      Viscous Fluid Flows ..................................... 300
      8.4.1 The Incompressible Limit .......................... 305
  8.5 Some Concluding Remarks ................................. 307

9 Linear and Nonlinear Stability of Fluid Motion .............. 311
  9.1 Some Aspects of the Theory of the Stability of Fluid
      Motion .................................................. 311
      9.1.1 Linear, Weakly Nonlinear, Nonlinear, and
            Hydrodynamic Stability ............................ 312
      9.1.2 Reynolds-Orr, Energy, Sufficient Stability
            Criterion ......................................... 316
      9.1.3 An Evolution Equation for Studying
            the Stability of a Basic Solution of Fluid
            Flow .............................................. 317
  9.2 Fundamental Ideas on the Theory of the Stability of
      Fluid Motion ............................................ 319
      9.2.1 Linear Case ....................................... 320
      9.2.2 Nonlinear Case .................................... 322
  9.3 The Guiraud-Zeytounian Asymptotic Approach to
      Nonlinear Hydrodynamic Stability ........................ 324
      9.3.1 Linear Theory ..................................... 326
      9.3.2 Nonlinear Theory - Confined Perturbations.
            Landau and Stuart Equations ....................... 328
      9.3.3 Nonlinear Theory - Unconfined Perturbations.
            General Setting ................................... 331
      9.3.4 Nonlinear Theory - Unconfined Perturbations.
            Tollmien-Schlichting Waves ........................ 332
      9.3.5 Nonlinear Theory - Unconfined Perturbations.
            Rayleigh-Bénard Convection ........................ 335
  9.4 Some Facets of the RB and BM Problem .................... 337
      9.4.1 Rayleigh-Bénard Convective Instability ............ 337
      9.4.2 Bénard-Marangoni (BM) Thermocapillary
            Instability Problem for a Thin Layer (Film)
            with a Deformable Free Surface .................... 356
  9.5 Couette-Taylor Viscous Flow Between Two Rotating
      Cylinders ............................................... 370
      9.5.1 A Short Survey .................................... 370
      9.5.2 Bifurcations ...................................... 376
  9.6 Concluding Comments and Remarks ......................... 380

10 A Finite-Dimensional Dynamical System Approach to
   Turbulence ................................................. 387
   10.1	A Phenomenological Approach to Turbulence ............. 387
   10.2	Bifurcations in Dissipative Dynamical Systems ......... 392
        10.2.1	Normal Form of the Pitchfork Bifurcation ...... 395
        10.2.2	Normal Form of the Hopf Bifurcation ........... 396
        10.2.3	Bifurcation from a Periodic Orbit to
                an Invariant Torus ............................ 398
   10.3	Transition to Turbulence: Scenarios, Routes to
        Chaos ................................................. 398
        10.3.1	The Landau-Hopf "Inadequate" Scenario ......... 399
        10.3.2	The Ruelle-Takens-Newhouse Scenario ........... 399
        10.3.3	The Feigenbaum Scenario ....................... 403
        10.3.4	The Pomeau-Manneville Scenario ................ 406
        10.3.5	Complementary Remarks ......................... 408
   10.4	Strange Attractors for Various Fluid Flows ............ 414
        10.4.1	Viscous Isochoric Wave Motions ................ 414
        10.4.2	The Bénard-Marangoni Problem for
                a Free-Falling Vertical Film: The Case of
                Re = O(1) and the KS Equation ................. 417
        10.4.3	The Bénard-Marangoni Problem for
                a Free-Falling Vertical Film: The Case of
                Re/ε = O(1) and the KS-KdV Equation ........... 424
        10.4.4	Viscous and Thermal Effects in a Simple
                Stratified Fluid Model ........................ 427
        10.4.5	Obukhov Discrete Cascade Systems for
                Developed Turbulence .......................... 435
        10.4.6	Unpredictability in Viscous Fluid Flow
                Between a Stationary and a Rotating Disk ...... 439
   10.5	Some Comments and References .......................... 444

References .................................................... 449

Index ......................................................... 485


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:32 2019. Размер: 22,220 bytes.
Посещение N 1807 c 26.04.2010