Foreword ........................................................ V
Preface ........................................................ XV
List of Authors .............................................. XVII
Part 1. Green Chemistry for Sustainable Development ............. 1
1.1. Green Chemistry and Environmentally Friendly
Technologies ............................................... 3
James H. Clark
1.1.1. Introduction ........................................ 3
1.1.2. Objectives for Green Chemistry: The Costs
of Waste ............................................ 4
1.1.3. Green Chemistry ..................................... 5
1.1.4. Environmentally Friendly Technologies .............. 10
1.1.5. Green Chemistry Metrics 16 References .............. 18
1.2. Sustainable Development and Regulation .................... 19
Diana Cook and Kevin Prior
1.2.1. Introduction ....................................... 19
1.2.1.1. Sustainable Development and the
European Union ............................ 20
1.2.1.2. Why Regulation is Required to Achieve
Sustainable Development ................... 20
1.2.1.3. Environmental Policy and Innovation ....... 21
1.2.2. Environmental Policy Instruments ................... 22
1.2.2.1. "Command and Control" Regulation .......... 22
1.2.2.2. Government Subsidies ...................... 23
1.2.2.3. Alternative Approaches .................... 24
1.2.3. Future Trends and Challenges ....................... 26
1.2.4. The Implications for Green Separation Processes .... 30
1.2.5. Conclusion ......................................... 30
References ................................................ 31
Part 2. New Synthetic Methodologies and the Demand for
Adequate Separation Processes .......................... 33
2.1. Microreactor Technology for Organic Synthesis ............. 35
G. Jas, U. Kunz, and D. Schmalz
2.1.1. Introduction ....................................... 35
2.1.2. Key Features of Microreactors ...................... 36
2.1.3. ApplicationsofMicroreactors ........................ 38
2.1.3.1. Microreactors in Organic Synthesis ........ 39
2.1.3.2. Applications of MRT in Process
Development ............................... 41
2.1.3.3. MRT in Industrial Production .............. 42
2.1.4. Microstructured Unit Operations for Workup ......... 44
2.1.5. Industrial Needs Relating to MRT ................... 45
2.1.6. How can Microreactors Contribute to a Greener
Chemistry? ......................................... 47
2.1.7. Conclusions and Outlook ............................ 48
References ................................................ 50
2.2. Solventless Reactions (SLR) ............................... 53
Rajender S. Varma and Yuhong Ju
2.2.1. Introduction ....................................... 53
2.2.2. Solventless (Neat) Reactions (by Mixing or
Grinding) .......................................... 54
2.2.2.1. Solvent-free Robinson Annulation .......... 54
2.2.2.2. Chemoselective, Solvent-free aldol
Condensation Reactions .................... 55
2.2.2.3. Knoevenagel Condensation Free of Solvent
and Catalyst .............................. 56
2.2.2.4. Solventless Oxidation Using the
Urea-Hydrogen Peroxide Complex (UHP) ...... 57
2.2.2.5. Expeditious Synthesis of l-Aryl-4-methyl-
l,2,4-triazolo[4,3-a]-quinoxalines ........ 58
2.2.2.6. Solventless Wittig Olefination ............ 59
2.2.3. Solventless Microwave-assisted Reactions ........... 60
2.2.3.1. Microwave-assisted Solventless Synthesis
of Heterocycles ........................... 60
2.2.3.2. Microwave-assisted Solventless
Condensations ............................. 62
2.2.3.3. Microwave-assisted Solventless
Oxidation ................................. 64
2.2.3.4. Amination of Aryl Halides without
a Transition Metal Catalyst ............... 64
2.2.3.5. Microwave-accelerated Transformation
of Carbonyl Functions to their Thio
Analogues ................................. 65
2.2.4. Microwave-assisted Solventless Reactions on
Solid Supports ..................................... 66
2.2.4.1. Protection-Deprotection (Cleavage)
Reactions ................................. 67
2.2.4.2. Condensation Reactions .................... 72
2.2.4.3. Solventless Rearrangement Promoted by
MW Irradiation ............................ 73
2.2.4.4. Oxidation Reactions - Oxidation of
Alcohols and Sulfides ..................... 73
2.2.4.5. Reduction Reactions ....................... 76
2.2.4.6. Microwave-assisted Synthesis of
Heterocyclic Compounds on Solid
Supports .................................. 78
2.2.5. Miscellaneous Reactions ............................ 80
2.2.5.1. Solvent-free Preparation of Ionic
Liquids Using Microwaves .................. 80
2.2.5.2. Enzyme-catalyzed Reactions 82
2.2.6. Conclusion ......................................... 82
References ................................................ 83
2.3. Combinatorial Chemistry on Solid Phases ................... 89
Mazaahir Kidwai and Richa Mohan
2.3.1. Introduction ....................................... 89
2.3.2. Theory ............................................. 90
2.3.3. Combinatorial Chemistry Applications on a Solid
Phase (CCSP) ....................................... 90
2.3.4. Microwave-assisted Solid-phase Synthesis ........... 97
2.3.4.1. Microwave-assisted Combinatorial
Synthesis on Solid Phases ................. 98
2.3.4.2. Microwave-assisted Polymer-supported
Library Synthesis ......................... 98
2.3.4.3. Microwave-assisted Solvent-free Library
Synthesis ................................. 99
2.3.4.5 Microwave-assisted Parallel Library
Synthesis on Planar Supports ............. 100
2.3.5. Conclusion ........................................ 101
References ............................................... 102
Part 3. New Developments in Separation Processes .............. 103
3.1. Overview of "Green" Separation Processes ................. 105
Richard D. Noble
3.1.1. Background ........................................ 205
3.1.2. Pollution Sources ................................. 106
3.1.3. Environmental Separations ......................... 108
3.1.4. Historical Perspective on Environmental
Pollution ......................................... 110
3.1.5. Unit Operations ................................... 112
3.1.6. Separation Mechanisms ............................. 113
3.1.7. Equilibrium Processes ............................. 115
3.1.8. Rate Processes .................................... 116
3.1.9. Countercurrent Operation .......................... 117
3.1.10.Productivity and Selectivity ...................... 119
3.1.10.1.Equilibrium Processes .................... 119
3.1.10.2.Rate Processes ........................... 120
3.1.10.3.Membrane Separation ...................... 120
3.1.11.Separating Agents ................................. 121
3.1.12.Selection of a Separation Process ................. 124
3.1.13.A Unified View of Separations ..................... 125
Acknowledgement .......................................... 126
References ............................................... 126
3.2. Distillation ............................................. 127
Sven Steinigeweg and Jürgen Gmehling
3.2.1. Introduction ...................................... 127
3.2.2. Phase Equilibria .................................. 128
3.2.2.1. Calculation of Vapor-liquid
Equilibria ............................... 128
3.2.2.1.1. Using Activity-Coefficient
Models ........................ 130
3.2.2.1.2. Using Equations of State
(EOS) for VLE Calculations .... 132
3.2.2.1.3. Azeotropy ..................... 133
3.2.2.2. Calculation of Distillation Processes .... 134
3.2.3. Distillation Processes ............................ 136
3.2.3.1. Separating Azeotropic Mixtures ........... 136
3.2.3.2. Coupled Columns .......................... 139
3.2.3.3. Reactive Distillation .................... 141
3.2.3.3.1. Thermodynamic Properties ...... 144
3.2.3.3.2. Reaction Kinetics and
Modeling ...................... 145
3.2.3.4. Combination of Distillation
with Other Unit Operations ...... 146
3.2.4. Column Internals .................................. 148
3.2.4.1. Internals for Conventional Distillation
Processes ................................ 148
3.2.4.2. Internals for Reactive Distillation
Processes ................................ 150
3.2.5. Summary ........................................... 151
References ............................................... 153
3.3. Creen Enantiomeric Separations by Inclusion
Complexation ............................................. 155
Fumio Toda
3.3.1. Introduction ...................................... 255
3.3.2. Enantiomeric Separations .......................... 256
3.3.2.1. Enantiomeric Separation of Hydrocarbons
and Their Halogeno Derivatives ........... 256
3.3.2.2. Amines, Amine N-Oxides, Oximes, and
Amino Acid Esters ........................ 157
3.3.2.3. Alcohols and Cyanohydrins ................ 259
3.3.2.4. Epoxides and Oxaziridines ................ 263
3.3.2.5. Ketones, Esters, Lactones and Lactams .... 264
3.3.2.6. Sulfoxides, Sulfinates, Sulfoximines,
Phosphinates and Phosphine Oxides ........ 270
3.3.3. Green One-Pot Preparative Process for Obtaining
Optically Active Compounds by a Combination of
Solid-state Reaction and Enantiomeric Separation
in a Water Suspension Medium ...................... 272
3.3.4. Enantiomeric Separation by Inclusion
Complexation in Suspension Media and by
Fractional Distillation ........................... 275
3.3.5. Enantiomeric Separation Without Using a Chiral
Source ............................................ 277
3.3.5.1. Enantiomeric Separation of rac-7-Bromo-
l,4,8-triphenyl-2,3-benzo[3.3.0]octa-
2,4,7- trien-6-one ....................... 277
3.3.5.2. Enantiomeric Separation by Complexation
with Achiral 2,3,6,7,10,11-Hexahydroxy
triphenylene ............................. 179
3.3.5.3 Enantiomeric Separation of 2,2'-
Dihydroxy-l,l'-binaphthyl by
Complexation with Racemic or Achiral
Ammonium Salts ........................... 280
3.3.6. Conclusions and Perspectives ...................... 284
References ............................................... 284
3.4. Chromatography: a Non-analytical View .................... 287
Alirio E. Rodrigues and Mirjana Minceva
3.4.1. Introduction ...................................... 287
3.4.2. Perfusion Chromatography .......................... 289
3.4.2.1. The Concept of "Augmented Diffusivity
by Convection" ........................... 291
3.4.2.2. The Efficiency of a Chromatographic
Column Measured by its HETP .............. 293
3.4.3. Simulated Moving Bed (SMB) Processes ....... 295
3.4.3.1. The Concept of SMB ................ 295
3.4.3.2. Modeling of SMB ................... 298
3.4.3.3. Design of SMB ..................... 202
3.4.3.4. Future Directions in SMB:
Multicomponent Separations
and SMBR .......................... 203
References ............................................... 205
3.5. Fluid Extraction ......................................... 207
3.5.1. Supercritical Fluids 207
Anna Banet Osuna, Ana Šerbanovič, and
Manuel Nunes da Ponte
3.5.1.1. Introduction ............................. 207
3.5.1.2. Supercritical Fluids and Clean
Separations .............................. 208
3.5.1.3. Extraction with Carbon Dioxide ........... 208
3.5.1.4. Fractionation of Liquid Mixtures ......... 210
3.5.1.5. Supercritical, Near-critical and
"Expanded" Solvents in Chemical
Reactions ................................ 220
3.5.1.6. Phase Equilibrium and Reaction-rate
Control .................................. 222
3.5.1.7. Hydrogenations in C02 .................... 223
3.5.1.8. Ionic Liquids and Supercritical Carbon
Dioxide .................................. 224
3.5.1.9. A Note on Supercritical Water ............ 227
Acknowledgments ................................... 227
References ........................................ 218
3.5.2. Fluorinated Solvents .............................. 229
Hiroshi Matsubara and Ilhyong Ryu
3.5.2.1. Introduction ............................. 229
3.5.2.2. Benzotrifluoride (BTF) ................... 222
3.5.2.3. Fluorous Ether F-626 ..................... 223
3.5.2.4. F-DMF .................................... 224
3.5.2.5. FC-72 (Perfluorohexanes) ................. 225
3.5.2.6. Conclusion ............................... 227
References ........................................ 228
3.5.3. Ionic Liquids: Structure, Properties and Major
Applications in Extraction/Reaction Technology .... 229
Jairton Dupont
3.5.3.1. Introduction ............................. 229
3.5.3.2. Ionic Liquids: Overview .................. 229
3.5.3.3. Preparation and Some Physico-Chemical
Properties of 1,3-Dialkylimidazolium
ILs ...................................... 231
3.5.3.4. Chemical Stability and Toxicity of 1,3
Dialkylimidazolium Ionic Liquids ......... 232
3.5.3.5. "Solvent" Properties and Structure of
Imidazolium ILs .......................... 234
3.5.3.6. Solubility of Ionic Liquids .............. 238
3.5.3.7. Extraction/Separation Processes
Involving Ionic Liquids .................. 240
3.5.3.8. Multiphase Catalysis Employing Ionic
Liquids .................................. 242
3.5.3.9. Conclusions and Perspectives ............. 245
References ........................................ 245
3.6. Membrane Processes ....................................... 251
3.6.1. Pressure-driven Membrane Processes ................ 251
Ivo F.J. Vankelecom and Lieven E.M. Gevers
3.6.1.1. Introduction ............................. 251
3.6.1.2. Fundamentals of the Processes ............ 252
3.6.1.2.1. Microfiltration ............... 252
3.6.1.2.2. Ultrafiltration ............... 253
3.6.1.2.3. Hyperfiltration ............... 253
3.6.1.2.4. Diafiltration ................. 254
3.6.1.3. Main Problems ............................ 254
3.6.1.3.1. Introduction .................. 254
3.6.1.3.2. Membrane Fouling .............. 255
3.6.1.3.3. Concentration Polarization .... 256
3.6.1.3.4. Membrane wetting .............. 257
3.6.1.4. Membrane Materials and Preparation ....... 257
3.6.1.4.1. Introduction .................. 257
3.6.1.4.2. Sintering ..................... 257
3.6.1.4.3. Stretching .................... 257
3.6.1.4.4. Track-etching ................. 258
3.6.1.4.5. Anodic Oxidation .............. 258
3.6.1.4.6. Phase Inversion ............... 259
3.6.1.4.7. Interfacial Polymerization .... 260
3.6.1.4.8. Coating ....................... 261
3.6.1.4.9. Surface Modification of
Membranes ..................... 261
3.6.1.4.10.Ceramic Membranes ............. 262
3.6.1.4.11.Supports ...................... 262
3.6.1.5. Applications in Organic Media ............ 263
3.6.1.5.1. Introduction .................. 263
3.6.1.5.2. Catalysis ..................... 263
3.6.1.5.3. Food Industry ................. 264
3.6.1.5.4. Petrochemical Industry ........ 265
3.6.1.5.5. Fine Chemical Synthesis ....... 267
3.6.1.6. Current Market ........................... 267
3.6.1.7. Perspectives ............................. 268
Acknowledgements .................................. 269
References ........................................ 269
3.6.2. Vapor Permeation and Pervaporation ................ 271
Thomas Schäfer and João G. Crespo
3.6.2.1. Introduction ............................. 273
3.6.2.2. Process Fundamentals ..................... 271
3.6.2.2.1. Principal Mass-Transport
Phenomena ..................... 271
3.6.2.2.2. Vapor Permeation/
Pervaporation Separation
Characterization .............. 273
3.6.2.3. Non-ideal Phenomena ...................... 276
3.6.2.3.1. Membrane Swelling and Flux
Coupling ...................... 276
3.6.2.3.2. Concentration Polarization .... 278
3.6.2.4. Technical Aspects of Vapor
Permeation/Pervaporation ................. 280
3.6.2.4.1. Feed-Fluid Dynamic
Conditions .................... 282
3.6.2.4.2. Downstream Pressure and
Condensation Strategy ......... 282
3.6.2.5. Implementation of Vapor Permeation/
Pervaporation in Chemical Processes ...... 283
3.6.2.5.1. Hybrid Processes Involving
Evaporation/Distillation ...... 284
3.6.2.5.2. Hybrid Processes Involving
(Bio)catalytic Reactors ....... 285
3.6.2.5.3. Other Relevant Separation
Applications .................. 286
3.6.2.5.4. Analytical Applications ....... 287
3.6.2.6. Perspectives ............................. 287
References ........................................ 289
3.7. Nanostructures in Separation ............................. 291
3.7.1. Functionalized Magnetic Particles ................. 291
Costas Tsouris, Jeremy Noonan, Tung-yu Ying,
Ching-Ju Chin, and Sotira Yiacoumi
3.7.1.1. Introduction ............................. 291
3.7.1.2. Examples of Functionalized Magnetic
Particles in Separations ................. 296
3.7.1.3. Theory of Magnetic Separations ........... 298
3.7.1.4. High-gradient Magnetic Separation
Modeling ................................. 298
References ............................................... 303
3.7.2. Dendrimers ........................................ 304
Karsten Gloe, Bianca Antonioli, Kerstin Gloe,
and Holger Stephan
3.7.2.1. Introduction ............................. 304
3.7.2.2. Dendrimers - Promising Reagents for
Separation Processes ..................... 305
3.7.2.3. Examples of Dendrimers in Separation
Processes ................................ 313
3.7.2.4. Conclusions and Future Prospects ......... 319
Acknowledgements ......................................... 320
References ............................................... 321
3.8. Separations Using Superheated Water ...................... 323
Anthony A. Clifford
3.8.1. Introduction ...................................... 323
3.8.1.1. Polarity ................................. 324
3.8.1.2. Solubilities of Organic Compounds ........ 325
3.8.1.3. Laboratory-scale Extraction .............. 326
3.8.1.4. Pilot-plant Equipment .................... 326
3.8.1.5. Energy Considerations .................... 327
3.8.2. Extraction and Degradation Studies ................ 328
3.8.2.1. Extraction From Solids and Semi-solids
Other Than Biomass ....................... 329
3.8.2.2. Extraction with Simultaneous
Degradation .............................. 330
3.8.2.3. Pilot-scale Studies of Decontamination ... 330
3.8.3. Extraction of Biomass ............................. 331
3.8.3.1. Laboratory-scale Extractions ............. 332
3.8.3.2. Extraction with Reaction ................. 334
3.8.3.3. Process Development ...................... 335
3.8.4. Extraction of Liquids ............................. 336
3.8.5. Chromatography .................................... 336
References ............................................... 337
Part 4. Concluding Remarks .................................... 341
Concluding Remarks ............................................ 343
Carlos A. M. Afonso and João G. Crespo
Index ......................................................... 345
|