Dacorogna B. Direct methods in the calculus of variations (New York, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаDacorogna B. Direct methods in the calculus of variations. - 2nd ed. - New York: Springer, 2008. - 619 p. - (Applied mathematical sciences; Vol. 78). - ISBN 0387357793
 

Оглавление / Contents
 
Preface ........................................................ xi

1.  Introduction ................................................ 1
    1.1.  The direct methods of the calculus of variations ...... 1
    1.2.  Convex analysis and the scalar case ................... 3
          1.2.1. Convex analysis ................................ 4
          1.2.2. Lower seniicontinuity and existence results .... 5
          1.2.3. The one dimensional case ....................... 7
    1.3.  Quasiconvex analysis and the vectorial case ........... 9
          1.3.1. Quasiconvex functions .......................... 9
          1.3.2. Quasiconvex envelopes ......................... 12
          1.3.3. Quasiconvex sets .............................. 13
          1.3.4. Lower seniicontinuity and existence
                 theorems ...................................... 15
    1.4.  Relaxation and non-convex problems ................... 17
          1.4.1. Relaxation theorems ........................... 18
          1.4.2. Some existence theorems for differential
                 inclusions .................................... 19
          1.4.3. Some existence results for non-quasiconvex
                 integrands .................................... 20
    1.5.  Miscellaneous ........................................ 23
          1.5.1. Hölder and Sobolev spaces ..................... 23
          1.5.2. Singular values ............................... 23
          1.5.3. Some underdetermincd partial differential
                 equations ..................................... 24
          1.5.4. Extension of Lipschitz maps ................... 25

I.  CONVEX ANALYSIS AND THE SCALAR CASE ........................ 29

2.  Convex sets and convex functions ........................... 31
    2.1.  Introduction ......................................... 31
    2.2.  Convex sets .......................................... 32
          2.2.1. Basic definitions and properties .............. 32
          2.2.2. Separation theorems ........................... 34
          2.2.3. Convex hull and Carathcodory theorem .......... 38
          2.2.4. Extreme points and Minkowski theorem .......... 42
    2.3.  Convex functions ..................................... 44
          2.3.1. Basic definitions and properties .............. 44
          2.3.2. Continuity of convex functions ................ 46
          2.3.3. Convex envelope ............................... 52
          2.3.4. Lower semicontinuous envelope ................. 56
          2.3.5. Legendre transform and duality ................ 57
          2.3.6. Subgradients and differentiability
                 of convex functions ........................... 61
          2.3.7. Gauges and their polars ....................... 68
          2.3.8. Choquet function .............................. 70

3.  Lower semicontinuity and existence theorems ................ 73
    3.1.  Introduction ......................................... 73
    3.2.  Weak lower semicontinuity ............................ 74
          3.2.1. Preliminaries ................................. 74
          3.2.2. Some approximation lemmas ..................... 77
          3.2.3. Necessary condition: the case without lower
                 order terms ................................... 82
          3.2.4. Necessary condition: the general case.......... 84
          3.2.5. Sufficient condition: a particular case ....... 94
          3.2.6. Sufficient condition: the general case ........ 96
    3.3.  Weak continuity and invariant integrals ............. 101
          3.3.1. Weak continuity .............................. 101
          3.3.2. Invariant integrals .......................... 103
    3.4.  Existence theorems and Euler-Lagrange equations ..... 105
          3.4.1. Existence theorems ........................... 105
          3.4.2. Euler-Lagrange equations ..................... 108
          3.4.3. Some regularity results ...................... 116

4.  The one dimensional case .................................. 119
    4.1.  Introduction ........................................ 119
    4.2.  An existence theorem ................................ 120
    4.3.  The Euler-Lagrange equation ......................... 125
          4.3.1. The classical and the weak forms ............. 125
          4.3.2. Second form of the Euler-Lagrange equation ... 129
    4.4.  Some inequalities ................................... 132
          4.4.1. Pohicare-Wirtinger inequality ................ 132
          4.4.2. Wirtinger inequality ......................... 132
    4.5.  Hamiltonian formulation ............................. 137
    4.6.  Regularity .......................................... 143
    4.7.  Lavrentiev phenomenon ............................... 148

II. QUASICONVEX ANALYSIS AND THE VECTORIAL CASE ............... 153

5.  Polyconvex, quasiconvex and rank one convex functions ..... 155
    5.1.  Introduction ........................................ 155
    5.2.  Definitions and main properties ..................... 156
          5.2.1. Definitions and notations .................... 156
          5.2.2. Main properties .............................. 158
          5.2.3. Further properties of polyconvex functions ... 163
          5.2.4. Further properties of quasiconvex
                 functions .................................... 171
          5.2.5. Further properties of rank one convex
                 functions .................................... 174
    5.3.  Examples ............................................ 178
          5.3.1. Quasiaffine functions ........................ 179
          5.3.2. Quadratic case ............................... 191
          5.3.3. Convexity of SO(n) x SO(n) and O(N) x O(n)
                 invariant functions .......................... 197
          5.3.4. Polyconvexity and rank one convexity of
                 SO(n) x SO(n) and O(N) x O(n) invariant
                 functions .................................... 202
          5.3.5. Functions depending on a quasiaffine
                 function ..................................... 212
          5.3.6. The area type case ........................... 215
          5.3.7. The example of Sverak ........................ 219
          5.3.8. The example of Alibert-Dacorogna-
                 Marcellini ................................... 221
          5.3.9. Quasiconvex functions with subquadratic
                 growth ....................................... 237
          5.3.10.The case of homogeneous functions of
                 degree one ................................... 239
          5.3.11.Sonic-more examples .......................... 245
    5.4.  Appendix: some basic properties of determinants ..... 249

6.  Polyconvex, quasiconvex and rank one convex envelopes ..... 265
    6.1.  Introduction ........................................ 265
    6.2.  The polyconvex envelope ............................. 266
          6.2.1.  Duality for polyconvex functions ............ 266
          6.2.2.  Another representation formula .............. 269
    6.3.  The quasiconvex envelope ............................ 271
    6.4.  The rank one convex envelope ........................ 277
    6.5.  Some more properties of the envelopes ............... 280
          6.5.1. Envelopes and sums of functions .............. 280
          6.5.2. Envelopes and invariances .................... 282
    6.6.  Examples ............................................ 285
          6.6.1. Duality for SO(n) x SO(n) and O(N) x O(n)
                 invariant functions .......................... 285
          6.6.2. The case of singular values .................. 291
          6.6.3. Functions depending on a quasiaffine
                 function ..................................... 296
          6.6.4. The area type case ........................... 298
          6.6.5. The Kohn-Strang example ...................... 300
          6.6.6. The Saint Venant-Kirchhoff energy function ... 305
          6.6.7. The case of a norm ........................... 309

7.  Polyconvex, quasiconvex and rank one convex sets .......... 313
    7.1.  Introduction ........................................ 313
    7.2.  Polyconvex, quasiconvex and rank one convex sets .... 315
          7.2.1. Definitions and main properties .............. 315
          7.2.2. Separation theorems for polyconvex sets ...... 321
          7.2.3. Appendix: functions with finitely many
                 gradients .................................... 322
    7.3.  The different types of convex hulls ................. 323
          7.3.1. The different convex hulls ................... 323
          7.3.2. The different convex finite hulls ............ 331
          7.3.3. Extreme points and Minkowski type theorem
                 for polyconvex, quasiconvex and rank one
                 convex sets .................................. 335
          7.3.4. Gauges for polyconvex sets ................... 342
          7.3.5. Choquet functions for polyconvex and rank
                 one convex sets .............................. 344
    7.4.  Examples ............................................ 347
          7.4.1. The case of singular values .................. 348
          7.4.2. The case of potential wells .................. 355
          7.4.3. The case of a quasiaffine function ........... 362
          7.4.4. A problem of optimal design .................. 364

8.  Lower semi continuity and existence theorems in the
    vectorial case ............................................ 367
    8.1.  Introduction ........................................ 367
    8.2.  Weak lower scmicontinuity ........................... 368
          8.2.1. Necessary condition .......................... 368
          8.2.2. Lower semicontinuity for quasiconvex
                 functions without lower order terms .......... 369
          8.2.3. Lower semicontinuity for general
                 quasiconvex functions for p = ∞  ............. 377
          8.2.4. Lower semicontinuity for general
                 quasiconvex functions for 1 < p < ∞ .......... 381
          8.2.5. Lower semicontinuity for polyconvex
                 functions .................................... 391
    8.3.  Weak Continuity ..................................... 393
          8.3.1. Necessary condition .......................... 393
          8.3.2. Sufficient condition ......................... 394
    8.4.  Existence theorems .................................. 403
          8.4.1. Existence theorem for quasiconvex
                 functions .................................... 403
          8.4.2. Existence theorem for polyconvex functions ... 404
    8.5.  Appendix: some properties of Jacobians .............. 407

III.RELAXATION AND NON-CONVEX PROBLEMS ........................ 413

9.  Relaxation theorems ....................................... 415
    9.1.  Introduction ........................................ 415
    9.2.  Relaxation Theorems ................................. 416
          9.2.1. The case without lower order terms ........... 416
          9.2.2. The general case ............................. 424

10. Implicit partial differential equations ................... 439
    10.1. Introduction ........................................ 439
    10.2. Existence theorems .................................. 440
          10.2.1. An abstract theorem ......................... 440
          10.2.2. A sufficient condition for the relaxation
                  property .................................... 444
          10.2.3. Appendix: Baire one functions ............... 449
    10.3. Examples ............................................ 451
          10.3.1. The scalar case ............................. 451
          10.3.2. The case of singular values ................. 459
          10.3.3. The case of potential wells ................. 461
          10.3.4. The case of a quasiaffine function .......... 462
          10.3.5. A problem of optimal design ................. 463

11. Existence of minima for non-quasiconvex integrands ........ 465
    11.1. Introduction ........................................ 465
    11.2. Sufficient conditions ............................... 467
    11.3. Necessary conditions ................................ 472
    11.4. The scalar case ..................................... 483
          11.4.1. The case of single integrals ................ 483
          11.4.2. The case of multiple integrals .............. 485
    11.5. The vectorial case .................................. 487
          11.5.1. The case of singular values ................. 488
          11.5.2. The case of quasiaffine functions ........... 490
          11.5.3. The Saint Venant-Kirchhoff energy ........... 492
          11.5.4. A problem of optimal design ................. 493
          11.5.5. The area type case .......................... 494
          11.5.6. The case of potential wells ................. 498

IV. MISCELLANEOUS ............................................. 501

12. Function spaces ........................................... 503
    12.1. Introduction ........................................ 503
    12.2. Main notation ....................................... 503
    12.3. Some properties of Holder spaces .................... 506
    12.4. Some properties of Sobolev spaces ................... 509
          12.4.1. Definitions and notations ................... 510
          12.4.2. Imbeddings and compact imbeddings ........... 510
          12.4.3. Approximation by smooth and piecewise
                  affine functions ............................ 512

13. Singular values ........................................... 515
    13.1. Introduction ........................................ 515
    13.2. Definition and basic properties ..................... 515
    13.3. Signed singular values and von Neumann type
          inequalities ........................................ 519

14. Some underdetermined partial differential equations ....... 529
    14.1. Introduction ........................................ 529
    14.2. The equations div u = f and curl u = f .............. 529
          14.2.1. A preliminary lemma ......................... 529
          14.2.2. The case div u = f .......................... 531
          14.2.3. The case curl u = f ......................... 533
    14.3. The equation det Ñ u = f ............................ 535
          14.3.1. The main theorem and some corollaries ....... 535
          14.3.2. A deformation argument ...................... 539
          14.3.3. A proof under a smallness assumption ........ 541
          14.3.4. Two proofs of the main theorem .............. 543

15. Extension of Lipschitz functions on Banach spaces ......... 549
    15.1. Introduction ........................................ 549
    15.2. Preliminaries and notation .......................... 549
    15.3. Norms induced by an inner product ................... 551
    15.4. Extension from a general subset of E to E ........... 558
    15.5. Extension from a convex subset of E to E ............ 565

Bibliography .................................................. 569

Notation ...................................................... 611

Index ......................................................... 615


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:30 2019. Размер: 19,569 bytes.
Посещение N 1679 c 26.04.2010