Pregla R. Analysis of electromagnetic fields and waves: the method of lines (N.Y., 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаPregla R. Analysis of electromagnetic fields and waves: the method of lines. - N.Y.: Wiley-VCH, 2008. - 507 p. - ISBN 978-0-470-03360-9
 

Оглавление / Contents
 
Preface ...................................................... xiii

1.  THE METHOD OF LINES ......................................... 1
    1.1.  INTRODUCTION .......................................... 1
    1.2.  MOL: FUNDAMENTALS OF DISCRETISATION ................... 5
          1.2.1.  Qualitative description ....................... 5
          1.2.2.  Quantitative description of the
                  discretisation ................................ 7
          1.2.3.  Numerical example ............................ 11

2.  BASIC PRINCIPLES OF THE METHOD OF LINES .................... 15
    2.1.  INTRODUCTION ......................................... 15
    2.2.  BASIC EQUATIONS ...................................... 16
          2.2.1.  Anisotropic material parameters .............. 16
          2.2.2.  Relations between transversal electric
                  and magnetic fields - generalised
                  transmission line (GTL) equations ............ 19
          2.2.3.  Relation to the analysis with vector
                  potentials ................................... 21
          2.2.4.  GTL equations for 2D structures .............. 22
          2.2.5.  Solution of the GTL equations ................ 23
          2.2.6.  Numerical examples ........................... 25

    2.3.  EIGENMODES IN PLANAR WAVEGUIDE STRUCTURES WITH
          ANISOTROPIC LAYERS ................................... 26
          2.3.1.  Introduction ................................. 26
          2.3.2.  Analysis equations for eigenmodes in planar
                  structures ................................... 30
          2.3.3.  Examples of system equations ................. 33
          2.3.4.  Impedance/admittance transformation in
                  multilayered structures ...................... 35
          2.3.5.  System equation in transformed domain ........ 36
          2.3.6.  System equation in spatial domain ............ 38
          2.3.7.  Matrix partition technique: two examples ..... 40
          2.3.8.  Numerical results ............................ 43
    2.4.  ANALYSIS OF PLANAR CIRCUITS .......................... 45
          2.4.1.  Discretisation of the transmission line
                  equations .................................... 45
          2.4.2.  Determination of the field components ........ 52
    2.5.  FIELD AND IMPEDANCE/ADMITTANCE TRANSFORMATION ........ 52
          2.5.1.  Introduction ................................. 52
          2.5.2.  Impedance/admittance transformation in
                  multilayered and multisectioned structures ... 53
          2.5.3.  Impedance/admittance transformation with
                  finite differences ........................... 61
          2.5.4.  Stable field transformation through layers
                  and sections ................................. 66

3.  ANALYSIS OF RECTANGULAR WAVEGUIDE CIRCUITS ................. 73
    3.1.  INTRODUCTION ......................................... 73
    3.2.  CONCATENATIONS OF WAVEGUIDE SECTIONS ................. 75
          3.2.1.  LSM and LSE modes in circular waveguide
                  bends ........................................ 76
          3.2.2.  LSM and LSE modes in straight waveguides ..... 80
          3.2.3.  Impedance transformation at waveguide
                  interfaces ................................... 82
          3.2.4.  Numerical results for concatenations ......... 84
          3.2.5.  Numerical results for waveguide filters ...... 87
    3.3.  WAVEGUIDE JUNCTIONS .................................. 90
          3.3.1.  E-plane junctions ............................ 93
          3.3.2.  H-plane junctions ............................ 96
          3.3.3.  Algorithm for generalised scattering
                  parameters ................................... 98
          3.3.4.  Special junctions: E-plane 3-port junction ... 99
          3.3.5.  Matched E-plane bend ........................ 100
          3.3.6.  Analysis of waveguide bend
                  discontinuities ............................. 103
          3.3.7.  Scattering parameters ....................... 110
          3.3.8.  Numerical results ........................... 110
    3.4.  ANALYSIS OF 3D WAVEGUIDE JUNCTIONS .................. 115
          3.4.1.  General description ......................... 116
          3.4.2.  Basic equations ............................. 117
          3.4.3.  Discretisation scheme for propagation
                  between A and В ............................. 118
          3.4.4.  Discontinuities ............................. 121
          3.4.5.  Coupling to other ports ..................... 122
          3.4.6.  Impedance/admittance transformation ......... 125
          3.4.7.  Numerical results ........................... 126

4.  ANALYSIS OF WAVEGUIDE STRUCTURES IN CYLINDRICAL
    COORDINATES ............................................... 131
    4.1.  INTRODUCTION ........................................ 131
    4.2.  GENERALISED TRANSMISSION LINE (GTL) EQUATIONS ....... 132
          4.2.1.  Material parameters in a cylindrical
                  coordinate system ........................... 132
          4.2.2.  GTL equations for z-direction ............... 133
          4.2.3.  GTL equations for ø-direction ............... 137
          4.2.4.  Analysis of circular (coaxial) waveguides
                  with azimuthally-magnetised ferrites and
                  azimuthally-magnetised solid plasma ......... 140
          4.2.5.  GTL equations for r-direction ............... 144
    4.3.  DISCRETISATION OF THE FIELDS AND SOLUTIONS........... 150
          4.3.1.  Equations for propagation in z-direction .... 150
          4.3.2.  Equations for propagation in ø-direction .... 153
          4.3.3.  Solution of the wave equations in z- and 
                  ø-direction ................................. 155
          4.3.4.  Equations for propagation in r-direction .... 155
    4.4.  SOLUTION IN RADIAL DIRECTION ........................ 155
          4.4.1.  Discretisation in z-direction - circular
                  dielectric resonators ....................... 155
          4.4.2.  Discretisation in z-direction - propagation
                  in indirection .............................. 162
          4.4.3.  Discretisation in ø-direction - eigenmodes
                  in circular multilayered waveguides ......... 171
          4.4.4.  Eigenmodes of circular waveguides with
                  magnetised ferrite or plasma -
                  discretisation in r-direction ............... 186
          4.4.5.  Waveguide bends - discretisation
                  in r-direction .............................. 202
          4.4.6.  Uniaxial anisotropic fibres with circular
                  and noncircular cross-section -
                  discretisation in ø-direction ............... 208
    4.5.  DISCONTINUITIES IN CIRCULAR WAVEGUIDES - ONE-
          DIMENSIONAL DISCRETISATION IN RADIAL DIRECTION ...... 216
          4.5.1.  Introduction ................................ 216
          4.5.2.  Basic equations for rotational symmetry ..... 217
          4.5.3.  Solution of the equations for rotational
                  symmetry .................................... 218
          4.5.4.  Admittance and impedance transformation ..... 219
          4.5.5.  Open ending circular waveguide .............. 220
          4.5.6.  Numerical results for discontinuities in
                  circular waveguides ......................... 223
          4.5.7.  Numerical results for coaxial line
                  discontinuities and coaxial filter
                  devices ..................................... 223
          4.5.8.  Non-rotational modes in circular
                  waveguides .................................. 225
          4.5.9.  Numerical results and discussion ............ 228
    4.6.  ANALYSIS OF GENERAL AXIALLY SYMMETRIC ANTENNAS
          WITH COAXIAL FEED LINES ............................. 229
          4.6.1.  Introduction ................................ 229
          4.6.2.  Theory ...................................... 230
          4.6.3.  Regions with crossed lines .................. 239
          4.6.4.  Two special cases ........................... 244
          4.6.5.  Port relations of section D ................. 247
          4.6.6.  Numerical results ........................... 248
          4.6.7.  Further structures and remarks .............. 249
    4.7.  DEVICES IN CYLINDRICAL COORDINATES - 
          TWO-DIMENSIONAL DISCRETISATION ...................... 250
          4.7.1.  Discretisation in r- and ø-direction ........ 250
          4.7.2.  Numerical results ........................... 253
          4.7.3.  Discretisation in r- and ø-direction ........ 253
          4.7.4.  Discretisation in ф- and ø-direction ........ 254
          4.7.5.  GTL equations for r-direction ............... 255

5.  ANALYSIS OF PERIODIC STRUCTURES ........................... 267
    5.1.  INTRODUCTION ........................................ 267
    5.2.  PRINCIPLE BEHAVIOUR OF PERIODIC STRUCTURES .......... 269
    5.3.  GENERAL THEORY OF PERIODIC STRUCTURES ............... 274
          5.3.1.  Port relations for general two ports ........ 274
          5.3.2.  Floquet modes for symmetric periods ......... 274
          5.3.3.  Concatenation of N symmetric periods ........ 280
          5.3.4.  Floquet modes for unsymmetric periods ....... 281
          5.3.5.  Some further general relations in periodic   
                  structures .................................. 283
    5.4.  NUMERICAL RESULTS FOR PERIODIC STRUCTURES IN ONE
          DIRECTION ........................................... 286
    5.5.  ANALYSIS OF PHOTONIC CRYSTALS ....................... 291
          5.5.1.  Determination of band diagrams .............. 291
          5.5.2.  Waveguide circuits in photonic crystals ..... 297
          5.5.3.  Numerical results for photonic crystal
                  circuits .................................... 299

6.  ANALYSIS OF COMPLEX STRUCTURES ............................ 311
    6.1.  LAYERS OF VARIABLE THICKNESS ........................ 311
          6.1.1.  Introduction ................................ 311
          6.1.2.  Matching conditions at curved interfaces .... 312
    6.2.  MICROSTRIP SHARP BEND ............................... 315
    6.3.  IMPEDANCE TRANSFORMATION AT DISCONTINUITIES ......... 318
          6.3.1.  Impedance transformation at concatenated
                  junctions ................................... 318
    6.4.  ANALYSIS OF PLANAR WAVEGUIDE JUNCTIONS .............. 320
          6.4.1.  Main diagonal submatrices ................... 322
          6.4.2.  Off-diagonal submatrices - coupling to
                  perpendicular ports ......................... 323
    6.5.  NUMERICAL RESULTS ................................... 327
          6.5.1.  Discontinuities in microstrips .............. 328
          6.5.2.  Waveguide junctions ......................... 333

7.  PRECISE RESOLUTION WITH AN ENHANCED AND GENERALISED
    LINE ALGORITHM ............................................ 345
    7.1.  INTRODUCTION ........................................ 345
    7.2.  CROSSED DISCRETISATION LINES AND CARTESIAN
          COORDINATES ......................................... 346
          7.2.1.  Theoretical background ...................... 346
          7.2.2.  Lines in vertical direction ................. 351
          7.2.3.  Lines in horizontal direction ............... 357
    7.3.  SPECIAL STRUCTURES IN CARTESIAN COORDINATES ......... 361
          7.3.1.  Groove guide ................................ 361
          7.3.2.  Coplanar waveguide .......................... 363
    7.4.  CROSSED DISCRETISATION LINES AND CYLINDRICAL
          COORDINATES ......................................... 366
          7.4.1.  Principle of analysis ....................... 366
          7.4.2.  General formulas for eigenmode
                  calculation ................................. 366
          7.4.3.  Discretisation lines in radial direction .... 367
          7.4.4.  Discretisation lines in azimuthal
                  direction ................................... 368
          7.4.5.  Coupling to neighbouring ports .............. 369
          7.4.6.  Steps of the analysis procedure ............. 373
    7.5.  NUMERICAL RESULTS ................................... 373

8.  WAVEGUIDE STRUCTURES WITH MATERIALS OF GENERAL
    ANISOTROPY IN ARBITRARY ORTHOGONAL COORDINATE SYSTEMS ..... 377
    8.1.  GENERALISED TRANSMISSION LINE EQUATIONS ............. 377
          8.1.1.  Material properties ......................... 377
          8.1.2.  Maxwell's equations in matrix notation ...... 377
          8.1.3.  Generalised transmission line equations in
                  Cartesian coordinates for general
                  anisotropic material ........................ 379
          8.1.4.  Generalised transmission line equations
                  for general anisotropic material in
                  arbitrary orthogonal coordinates ............ 381
          8.1.5.  Boundary conditions ......................... 383
          8.1.6.  Interpolation matrices ...................... 384
    8.2.  DISCRETISATION ...................................... 385
          8.2.1.  Two-dimensional discretisation .............. 385
          8.2.2.  One-dimensional discretisation .............. 386
    8.3.  SOLUTION OF THE DIFFERENTIAL EQUATIONS .............. 388
          8.3.1.  General solution ............................ 388
          8.3.2.  Field relation between interfaces A and В ... 389
    8.4.  ANALYSIS OF WAVEGUIDE JUNCTIONS AND SHARP BENDS
          WITH GENERAL ANISOTROPIC MATERIAL BY USING
          ORTHOGONAL PROPAGATING WAVES ........................ 389
          8.4.1.  Introduction ................................ 389
          8.4.2.  Theory ...................................... 389
          8.4.3.  Main diagonal submatrices ................... 391
          8.4.4.  Off-diagonal submatrices - coupling to
                  other ports ................................. 393
          8.4.5.  Steps of the analysis procedure ............. 398
    8.5.  NUMERICAL RESULTS ................................... 398
    8.6.  ANALYSIS OF WAVEGUIDE STRUCTURES IN SPHERICAL
          COORDINATES ......................................... 399
          8.6.1.  Introduction ................................ 399
          8.6.2.  Generalised transmission line equations
                  in spherical coordinates .................... 400
          8.6.3.  Analysis of special devices - conformal
                  antennas .................................... 408
          8.6.4.  Analysis of special devices - conical horn
                  antennas .................................... 413
          8.6.5.  Numerical results ........................... 419
    8.7.  ELLIPTICAL COORDINATES .............................. 420
          8.7.1.  GTL equations for z-direction ............... 421
          8.7.2.  GTL equations for ξ-direction ............... 422
          8.7.3.  GTL equations for η-direction ............... 423
          8.7.4.  Hollow waveguides with elliptic
                  cross-section ............................... 424

9.  SUMMARY AND PROSPECT FOR THE FUTURE ....................... 429

A.  DISCRETISATION SCHEMES AND DIFFERENCE OPERATORS ........... 433
    A.1.  DETERMINATION OF THE EIGENVALUES AND EIGENVECTORS
          OF P ................................................ 433
          A.1.1.  Calculation of the matrices 5 ............... 436
          A.1.2.  Derivation of the eigenvalues of the
                  Neumann problem from those of the
                  Dirichlet problem ........................... 438
          A.1.3.  The component of er at an abrupt
                  transition .................................. 439
          A.1.4.  Eigenvalues and eigenvectors for periodic
                  boundary conditions ......................... 441
          A.1.5.  Discretisation for non-ideal places of the
                  boundaries .................................. 442
    A.2.  ABSORBING BOUNDARY CONDITIONS (ABCs) ................ 444
          A.2.1.  Introduction1 ............................... 444
          A.2.2.  Factorisation of the Helmholtz equation ..... 445
          A.2.3.  Pade approximation .......................... 446
          A.2.4.  Polynomial approximations ................... 447
          A.2.5.  Construction of the difference operator
                  for ABCs .................................... 449
          A.2.6.  Special boundary conditions (SBCs) .......... 450
          A.2.7.  Numerical results ........................... 450
          A.2.8.  ABCs for cylindrical coordinates ............ 453
          A.2.9.  Periodic boundary conditions ................ 455
    A.3.  HIGHER-ORDER DIFFERENCE OPERATORS [11] .............. 456
          A.3.1.  Introduction3 ............................... 456
          A.3.2.  Theory ...................................... 457
          A.3.3.  Numerical results ........................... 459
    A.4.  NON-EQUIDISTANT DISCRETISATION ...................... 460
          A.4.1.  Introduction ................................ 460
          A.4.2.  Theory ...................................... 460
          A.4.3.  Interpolation ............................... 464
          A.4.4.  Numerical results ........................... 466
    A.5.  REFLECTIONS IN DISCRETISATION GRIDS ................. 468
          A.5.1.  Introduction ................................ 468
          A.5.2.  Dispersion relations ........................ 468
          A.5.3.  Reflections at discretisation transitions ... 471
    A.6.  FIELD EXTRAPOLATION FOR NEUMANN BOUNDARY 
          CONDITIONS .......................................... 475
    A.7.  ABOUT THE NATURE OF THE METHOD OF LINES ............. 476
          A.7.1.  Introduction ................................ 476
          A.7.2.  Relation between shielded structures and
                  periodic ones ............................... 477
          A.7.3.  Method of Lines and discrete Fourier
                  transformation .............................. 478
          A.7.4.  Discussion .................................. 479
    A.8.  RELATION BETWEEN THE MODE MATCHING METHOD (МММ)
          AND THE METHOD OF LINES (MoL) FOR INHOMOGENEOUS
          MEDIA ............................................... 480
    A.9.  RECIPROCITY AND ITS CONSEQUENCES .................... 483

В.  TRANSMISSION LINE EQUATIONS ............................... 491
    B.1.  TRANSMISSION LINE EQUATIONS IN FIELD VECTOR
          NOTATION ............................................ 491
    B.2.  DERIVATION OF THE MULTICONDUCTOR TRANSMISSION LINE
          EQUATIONS ........................................... 492

С.  SCATTERING PARAMETERS ..................................... 497

D.  EQUIVALENT CIRCUITS FOR DISCONTINUITIES ................... 499

E.  APPROXIMATE METALLIC LOSS CALCULATION IN CONFORMAL
    STRUCTURES ................................................ 501

Index ......................................................... 503


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:28 2019. Размер: 23,450 bytes.
Посещение N 1747 c 26.04.2010