Kosevich A.M. The crystal lattice (Weinheim, 2005). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаKosevich A.M. The crystal lattice: phonons, solitons, dislocations, superlattices. - 2nd, rev. & updated ed. - Weinheim: Wiley-VCH, 2005. - 345 p. - ISBN 3-527-40508-9
 

Оглавление / Contents
 
Prefaces ....................................................... IX 

Part 1.	Introduction ............................................ 1

0. Geometry of Crystal Lattice .................................. 3
   0.1. Translational Symmetry .................................. 3
   0.2. Bravais Lattice ......................................... 5
   0.3. The Reciprocal Lattice .................................. 7
   0.4. Use of Penetrating Radiation to Determine Crystal
        Structure .............................................. 10
        0.4.1. Problems ........................................ 12

Part 2. Classical Dynamics of a Crystal Lattice ................ 15

1. Mechanics of a One-Dimensional Crystal ...................... 17
   l.1. Equations of Motion and Dispersion Law ................. 17
        1.1.1. Problems ........................................ 23
   1.2. Motion of a Localized Excitation in a Monatomic
        Chain .................................................. 24
   1.3. Transverse Vibrations of a Linear Chain ................ 29
   1.4. Solitons of Bending Vibrations of a Linear Chain ....... 33
   1.5. Dynamics of Biatomic 1D Crystals ....................... 36
   1.6. Frenkel-Kontorova Model and sine-Gordon Equation ....... 39
   1.7. Soliton as a Particle in 1D Crystals ................... 43
   1.8. Harmonic Vibrations in a 1D Crystal Containing
        a Crowdion (Kink) ...................................... 46
   1.9. Motion of the Crowdion in a Discrete Chain ............. 49
   1.10. Point Defect in the 1D Crystal ........................ 51
   1.11. Heavy Defects and ID Superlattice ..................... 54

2. General Analysis of Vibrations of Monatomic Lattices ........ 59
   2.1. Equation of Small Vibrations of 3D Lattice ............. 59
   2.2. The Dispersion Law of Stationary Vibrations ............ 63
   2.3. Normal Modes of Vibrations ............................. 66
   2.4. Analysis of the Dispersion Law ......................... 67
   2.5. Spectrum of Quasi-Wave Vector Values ................... 70
   2.6. Normal Coordinates of Crystal Vibrations ............... 72
   2.7. The Crystal as a Violation of Space Symmetry ........... 74
   2.8. Long-Wave Approximation and Macroscopic Equations for
        the Displacements Field ................................ 75
   2.9. The Theory of Elasticity ............................... 77
   2.10. Vibrations of a Strongly Anisotropic Crystal
         (Scalar Model) ........................................ 80
   2.11. "Bending" Waves in a Strongly Anisotropic Crystal ..... 83
         2.11.1. Problem ....................................... 88

3. Vibrations of Polyatomic Lattices ........................... 89
   3.1. Optical Vibrations ..................................... 89
   3.2. General Analysis of Vibrations of Polyatomic Lattice ... 94
   3.3. Molecular Crystals ..................................... 98
   3.4. Two-Dimensional Dipole Lattice ........................ 101
   3.5. Optical Vibrations of a 2D Lattice of Bubbles ......... 105
   3.6. Long-Wave Librational Vibrations of a 2D Dipole
        Lattice ............................................... 109
   3.7. Longitudinal Vibrations of 2D Electron Crystal ........ 112
   3.8. Long-Wave Vibrations of an Ion Crystal ................ 117
        3.8.1. Problems ....................................... 123

4. Frequency Spectrum and Its Connection with the Green
   Function ................................................... 125
   4.1. Constant-Frequency Surface ............................ 125
   4.2. Frequency Spectrum of Vibrations ...................... 129
   4.3. Analysis of Vibrational Frequency Distribution ........ 132
   4.4. Dependence of Frequency Distribution on Crystal
        Dimensionality ........................................ 136
   4.5. Green Function for the Vibration Equation ............. 141
   4.6. Retarding and Advancing Green Functions ............... 145
   4.7. Relation Between Density of States and Green
        Function .............................................. 147
   4.8. The Spectrum of Eigenfrequencies and the Green Function
        of a Deformed Crystal ................................. 149
        4.8.1. Problems ....................................... 151

5. Acoustics of Elastic Superlattices: Phonon Crystals ........ 153
   5.1. Forbidden Areas of Frequencies and Specific Dynamic
        States in such Areas .................................. 153
   5.2. Acoustics of Elastic Superlattices .................... 155
   5.3. Dispersion Relation for a Simple Superlattice Model ... 159
        5.3.1. Problem ........................................ 162

Part 3. Quantum Mechanics of Crystals ......................... 163

6. Quantization of Crystal Vibrations ......................... 165
   6.1. Occupation-Number Representation ...................... 165
   6.2. Phonons ............................................... 170
   6.3. Quantum-Mechanical Definition of the Green Function ... 172
   6.4. Displacement Correlator and the Mean Square of Atomic
        Displacement .......................................... 174
   6.5. Atomic Localization near the Crystal Lattice Site ..... 176
   6.6. Quantization of Elastic Deformation Field ............. 178

7. Interaction of Excitations in a Crystal .................... 183
   7.1. Anharmonicity of Crystal Vibrations and Phonon
        Interaction ........................................... 183
   7.2. The Effective Hamiltonian for Phonon Interaction and
        Decay Processes ....................................... 186
   7.3. Inelastic Diffraction on a Crystal and Reproduction of
        the Vibration Dispersion Law .......................... 191
   7.4. Effect of Thermal Atomic Motion on Elastic
        γ-Quantum-Scattering ............................ 196
   7.5. Equation of Phonon Motion in a Deformed Crystal ....... 198

8. Quantum Crystals ........................................... 203
   8.1. Stability Condition of a Crystal State ................ 203
   8.2. The Ground State of Quantum Crystal ................... 206
   8.3. Equations for Small Vibrations of a Quantum Crystal ... 207
   8.4. The Long-Wave Vibration Spectrum ...................... 211

Part 4. Crystal Lattice Defects ............................... 213

9. Point Defects .............................................. 215
   9.1. Point-Defect Models in the Crystal Lattice ............ 215
   9.2. Defects in Quantum Crystals ........................... 218
   9.3. Mechanisms of Classical Diffusion and Quantum Diffusion
        of Defectons .......................................... 222
   9.4. Quantum Crowdion Motion ............................... 225
   9.5. Point Defect in Elasticity Theory ..................... 227
        9.5.1. Problem ........................................ 232

10. Linear Crystal Defects .................................... 233
    10.1. Dislocations ........................................ 233
    10.2. Dislocations in Elasticity Theory ................... 235
    10.3. Glide and Climb of a Dislocation .................... 238
    10.4. Disclinations ....................................... 241
    10.5. Disclinations and Dislocations ...................... 244
          10.5.1. Problems .................................... 246

11. Localization of Vibrations ................................ 247
    11.1. Localization of Vibrations near an Isolated Isotope
          Defect .............................................. 247
    11.2. Elastic Wave Scattering by Point Defects ............ 253
    11.3. Green Function for a Crystal with Point Defects ..... 259
    11.4. Influence of Defects on the Density of Vibrational
          States in a Crystal ................................. 264
    11.5. Quasi-Local Vibrations .............................. 267
    11.6. Collective Excitations in a Crystal with Heavy
          Impurities .......................................... 271
    11.7. Possible Rearrangement of the Spectrum of Long-Wave
          Crystal Vibrations .................................. 274
          11.7.1. Problems .................................... 277

12. Localization of Vibrations Near Extended Defects .......... 279
    12.1. Crystal Vibrations with ID Local Inhomogeneity ...... 279
    12.2. Quasi-Local Vibrations Near a Dislocation ........... 283
    12.3. Localization of Small Vibrations in the Elastic Field
          of a Screw Dislocation .............................. 285
    12.4. Frequency of Local Vibrations in the Presence of
          a Two-Dimensional (Planar) Defect ................... 288

13. Elastic Field of Dislocations in a Crystal ................ 297
    13.1. Equilibrium Equation for an Elastic Medium Containing
          Dislocations ........................................ 297
    13.2. Stress Field Action on Dislocation .................. 299
    13.3. Fields and the Interaction of Straight
          Dislocations ........................................ 303
    13.4. The Peierls Model ................................... 309
    13.5. Dislocation Field in a Sample of Finite
          Dimensions .......................................... 312
    13.6. Long-Range Order in a Dislocated Crystal ............ 314
          13.6.1. Problems .................................... 319

14. Dislocation Dynamics ...................................... 321
    14.1. Elastic Field of Moving Dislocations ................ 321
    14.2. Dislocations as Plasticity Carriers ................. 325
    14.3. Energy and Effective Mass of a Moving Dislocation ... 327
    14.4. Equation for Dislocation Motion ..................... 331
    14.5. Vibrations of a Lattice of Screw Dislocations ....... 336

Bibliography .................................................. 341

Index ......................................................... 343


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:28 2019. Размер: 13,805 bytes.
Посещение N 1698 c 26.04.2010