Preface ...................................................... xiii
1. Advanced Ceramics and Nanocomposites of Half-metallic
Ferromagnetic CrO2 for Magnetic, GMR and Optical Sensors ..... 1
S. Ram, S. Biswas, and H. J-Fecht
1. Introduction .............................................. 1
1.1. Definition of Half-metals and Half-metallic
Compounds ............................................ 1
1.2. Spin Polarization .................................... 5
2. Chromium Dioxide Ceramics and Nanocomposites .............. 6
2.1. Crystal Structure .................................... 6
2.2. Methods of Synthesis ................................. 7
3. Stability and Controlled Transformation—in
Phase-stabilized Particles ............................... 21
4. Electronic Band Structure ................................ 24
5. Electronic Properties .................................... 27
5.1. Dielectric Properties ............................... 27
5.2. Electrical Properties ............................... 30
6. Magnetic Properties ...................................... 37
7. GMR Properties ........................................... 42
8. Optical Properties ....................................... 48
9. Applications ............................................. 52
10. Toxicities and Hazards .................................. 52
Acknowledgment .............................................. 53
References .................................................. 53
Questions ................................................... 63
2. Functional Nanostructured Thin Films ........................ 65
Hare Krishna and Ramki Kalyanaraman
1. Introduction ............................................. 65
1.1. Fabricating Nanostructured Surfaces ................. 67
1.2. Self-assembly of Nanostructures by Film Nucleation
and Growth .......................................... 69
1.3. Self-assembly by Ion Irradiation .................... 77
1.4. Characterization .................................... 81
1.5. Applications ........................................ 93
1.6. Conclusion ......................................... 100
Acknowledgment ............................................. 101
References ................................................. 101
Questions .................................................. 106
3. MEMS for Nanotechnology: Top-down Perspective .............. 107
Ghanashyam Londe, Arum Han, Hyoung J. Cho
1. Introduction ............................................ 107
2. Micromachining Techniques ............................... 108
2.1. Photolithography ................................... 108
2.2. Bulk Micromachining ................................ 110
2.3. Surface Micromachining ............................. 113
2.4. Combined Method .................................... 115
3. Nanofabrication ......................................... 117
3.1. Electron Beam Lithography (EBL) .................... 119
3.2. Scanning Probe Lithography (SPL) ................... 124
3.3. Soft Lithography ................................... 126
3.4. Nanoimprint Lithography (NIL) ...................... 128
4. Integration and Interface ............................... 131
4.1. Carbon Nanotube (CNT) Manipulation—with
Microelectrode ..................................... 131
4.2. Nanoparticle Interface with Microelectrode ......... 132
5. Applications ............................................ 134
5.1. Nanobeam ........................................... 134
5.2. Nanoprobe .......................................... 138
5.3. Nanopore and Nanograp .............................. 141
5.4. Channel and Needle ................................. 143
5.5. Nanowire and Nanotube .............................. 147
5.6. Nanocrystal and Nanocrescent ....................... 154
5.7. Tools for Nanoscale Manipulation ................... 155
6. Conclusion .............................................. 158
Acknowledgment ............................................. 160
References ................................................. 160
Questions .................................................. 167
4. Nanostructured Biomaterials ................................ 168
Samar J. Kalita
1. Introduction ............................................ 168
1.1. Biocompatibility and Types of Tissue Responses ..... 172
2. Classification .......................................... 173
2.1. Metallic Biomaterials .............................. 173
2.2. Ceramic Biomaterials ............................... 181
2.3. Polymeric Biomaterials ............................. 196
2.4. Composite Biomaterials ............................. 202
3. Cell Response to Nanobiomaterials and Current
Advances ................................................ 204
4. Summary ................................................. 208
References ................................................. 210
Questions .................................................. 219
5. Self-Assembly in Nanophase Separated Polymer
and Thin Film: Supramolecular Assembly ..................... 220
Naba K. Dutta and Namita Roy Choudhury
1. Introduction ............................................ 220
1.1. Self-assembly ...................................... 220
1.2. Strategies of Self-assembling Supramolecular
Complexes .......................................... 223
2. Mesophase Separation in Block Co-Polymer System ......... 228
2.1. Evolution of Supramolecular Assembly in Block
Copolymers ......................................... 228
2.2. Synthetic Strategy of Multiblock Copolymers ........ 240
2.3. Nanophase Separation in Side Chain Crystalline
Polymers ........................................... 248
3. Self-Assembled Nanoparticle System ...................... 253
3.1. Zero-dimensional Self-assembly ..................... 253
3.2. Nanoparticles in Nanostructured Polymer ............ 258
3.3. Two-dimensional Thin Film .......................... 261
3.4. Self-assembly in Biocompatible System and
Biomolecular Assembly .............................. 270
3.5. Supramolecular Assembly via Hydrogen Bonding ....... 272
3.6. Molecular Clusters ................................. 276
4. Characterization of a Self-assembled System ............. 277
4.1. Advanced Scattering Techniques ..................... 278
4.2. Advanced Surface Analysis Techniques ............... 282
4.3. MALDI-MS, TOF-SIMS ................................. 283
4.4. Microscopic Techniques ............................. 284
4.5. Solid-state NMR in Characterizing Self-assembled
Nanostructures ..................................... 286
4.6. Advanced Thermal Analysis .......................... 287
5. Application and Future Outlook .......................... 289
6. Acknowledgment .......................................... 291
References ................................................. 291
Questions .................................................. 304
6. Nanostructures: Sensor and Catalytic Properties ............ 305
B. Roldan Cuenya, A. Kolmakov
1. Introduction ............................................ 305
1.1. Overview ...................................... 305
1.2. Why are Nanostructures Important for Gas Sensing
and Catalysis?
(Structure-Sensitivity Relationship) ............... 307
1.3. The Impact on the Fundamental Science .............. 309
2. Phenomena at Nanoscaled Metal and Semiconducting Oxide
Surfaces Relevant to Gas Sensing and Catalysis .......... 309
2.1. Pristine Oxide Surfaces: Physisorption vs.
Chemisorption ...................................... 309
2.2. Band Bending and Charge Depletion .................. 311
2.3. Chemisorption and Magnetization .................... 313
3. Nanostructured Gas Sensors: Some Examples of Detection
Principles .............................................. 315
3.1. Two-dimensional Nanoscaled Metal/Oxide/
Semiconductor Diodes ............................... 315
3.2. Quasi-1D Nanostructured Oxides as a New Platform
for Gas Sensing .................................... 323
4. New Surface Science Trends for the Characterization of
Nanostructures .......................................... 331
5. Concluding Remarks ...................................... 334
Acknowledgment ............................................. 335
References ................................................. 335
Questions .................................................. 344
7. Nanostructured High-Anisotropy Materials for High-Density
Magnetic Recording ......................................... 345
J. S. Chen, С. J. Sun, G. M. Chow
1. Introduction ............................................ 345
2. Definition and Characterization of Chemical Ordering
of Lin FePt ............................................. 349
2.1. Chemical Ordering of Ll0 FePt ...................... 349
2.2. Characterization of Ll0 FePt Chemical Ordering ..... 351
3. Preparation of Ll0 FePt Films and Parameters Affecting
the Chemical Ordering ................................... 356
3.1. Preparation of Ll0 FePt Films ...................... 356
3.2. Effects of Temperature, Stoichiometry and Film
Thickness on Chemical Ordering ..................... 356
3.3. Promotion of Chemical Ordering by Doping ........... 358
3.4. Strain- or Stress-Induced Ll0 Ordering ............. 360
3.5. Other Approaches to Enhance Ll0 Ordering ........... 368
4. Intrinsic Properties of the Ll0 FePt Films .............. 369
4.1. Magnetocrystalline Anisotropy, Magnetization and
Curie Temeperture of Ll0 FePt Films ................ 369
4.2. Effects of Size and Interface on Coercivity and
Magnetization Reversal ............................. 374
5. Application of Ll0 FePt alloy thin film for
perpendicular magnetic recording ........................ 378
5.1. Control of FePt (001) Texture ...................... 379
5.2. Control of Exchange Coupling and Grain Size of
FePtFilms .......................................... 386
5.3. Recording Performance of Ll0 FePt Perpendicular
Media .............................................. 398
6. Summary and Outlook ..................................... 405
References ................................................. 405
8. High-Resolution Transmission Electron Microscopy for
Nanocharacterization ....................................... 414
Helge Heinrich
1. Introduction ............................................ 414
2. Sample Preparation ...................................... 416
2.1. Electropolishing ................................... 418
2.2. Ion-beam Milling ................................... 419
2.3. The Focused Ion-beam Technique ..................... 419
2.4. Tripod Polishing ................................... 421
2.5. Powders and Suspensions ............................ 422
3. Principles of Image Formation ........................... 423
3.1. The Transmission Electron Microscope ............... 424
3.2. The Ewald Construction and the Reciprocal Space .... 433
3.3. Scattering Theory .................................. 452
4. Imaging of Nanostructured Material ...................... 458
4.1. High-resolution Transmission Electron Microscopy
(HRTEM) ............................................ 458
4.2. Scanning Transmission Electron Microscopy .......... 470
4.3. Electron Holography ................................ 477
5. Analytical Electron Microscopy .......................... 482
5.1. Electron Energy-loss Spectroscopy .................. 485
5.2. Energy-filtered Electron Microscopy ................ 488
5.3. X-ray Analysis and Chemical Mapping ................ 490
6. New Developments in Electron Microscopy ................. 493
7. Acknowledgments ......................................... 494
References ................................................. 494
Questions .................................................. 500
Solutions to Questions ..................................... 502
9. Applications of Atomic Force Microscope (AFM) in the
Field of Nanomaterials and Nanocomposites .................. 504
S. Bandyopadhyay, S. K. Samudrala, A. K. Bhowmick, and
S. K. Gupta
1. Introduction ............................................ 504
1.1. Nanomaterials ...................................... 505
1.2. Nanocomposites ..................................... 508
1.3. Characterization Techniques ........................ 509
2. Atomic Force Microscope Instrumentation and Setup ....... 512
2.1. Principle of Operation ............................. 513
2.2. Factors that Influence the Precision and Accuracy
of AFM Imaging ..................................... 515
2.3. Different Modes of Imaging in AFM .................. 517
2.4. Constant Force and Constant Height Criterion ....... 520
2.5. AFM in Nanotechnological Applications .............. 520
3. Contributions of AFM to the Field of Nanotechnology ..... 521
3.1. Characterization of Nanoparticles/Nanomaterials .... 521
3.2. Characterization of Nanocomposites ................. 526
3.3. Conductive AFM as a Means to Characterize
Electrical Properties .............................. 538
3.4. Characterization of Nano-Mechanical and
Nano-Tribological Properties ....................... 540
3.5. Nanofabrication/Nanolithography .................... 550
4. Concluding Remarks ...................................... 557
Acknowledgments ............................................ 557
References ................................................. 558
Questions .................................................. 568
Index ......................................................... 569
|