Jondeau E. Financial modeling under non-gaussian distributions (London, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаJondeau E. Financial modeling under non-gaussian distributions / Jondeau E., Poon S.-H., Rockinger M. - London: Springer, 2007. - 541 p. - (Springer finance). - ISSN 1616-0533; ISBN 1-84628-419-8
 

Оглавление / Contents
 
Part I. Financial Markets and Financial Time Series

1. Introduction ................................................. 3
   1.1. Financial markets and financial time series ............. 3
   1.2. Econometric modeling of asset returns ................... 4
   1.3. Applications of non-Gaussian econometrics ............... 5
   1.4. Option pricing with non-Gaussian distributions .......... 5

2. Statistical Properties of Financial Market Data .............. 7
   2.1. Definitions of returns .................................. 7
        2.1.1. Simple returns ................................... 8
        2.1.2. Log-returns ...................................... 8
        2.1.3. Stylized facts ................................... 9
   2.2. Distribution of returns ................................ 10
        2.2.1. Moments of a random variable .................... 10
        2.2.2. Empirical moments ............................... 14
        2.2.3. Testing for normality ........................... 16
   2.3. Time dependency ........................................ 21
        2.3.1. Serial correlation in returns ................... 22
        2.3.2. Serial correlation in volatility ................ 23
        2.3.3. Volatility asymmetry ............................ 25
        2.3.4. Time-varying higher moments ..................... 26
   2.4. Linear dependence across returns ....................... 26
        2.4.1. Pearson's correlation coefficient ............... 27
        2.4.2. Test for equality of two correlation
               coefficients .................................... 28
        2.4.3. Test for equality of two correlation matrices ... 30
   2.5. Multivariate higher moments ............................ 31
        2.5.1. Multivariate co-skewness and co-kurtosis ........ 31
        2.5.2. Computing moments of portfolio returns .......... 32

3. Functioning of Financial Markets and Theoretical Models
   for Returns ................................................. 33
   3.1. Functioning of financial markets ....................... 34
        3.1.1. Organization of financial markets ............... 34
        3.1.2. Examples of orders .............................. 37
        3.1.3. Components of the bid-ask spread ................ 39
   3.2. Mandelbrot and the stable distribution ................. 39
        3.2.1. A puzzling result ............................... 40
        3.2.2. Stable distribution ............................. 41
   3.3. Clark's subordination model ............................ 44
        3.3.1. The idea of the model ........................... 44
        3.3.2. The density of returns under subordination ...... 46
   3.4. A bivariate mixture-of-distribution model for return and
        volume ................................................. 48
        3.4.1. A microstructure model for information
               arrivals ........................................ 48
        3.4.2. Implications of the mixture of distributions
               hypothesis ...................................... 53
        3.4.3. Testing the mixture of distribution
               hypothesis ...................................... 57
        3.4.4. Extensions ...................................... 61
   3.5. A model of prices and quotes in a quote-driven
        market ................................................. 62
        3.5.1. A model based on the trade flow ................. 63
        3.5.2. Estimating the parameters ....................... 66
        3.5.3. The quote process ............................... 68
        3.5.4. Extension to the liquidation of a large
               portfolio ....................................... 73

Part II. Econometric Modeling of Asset Returns

4. Modeling Volatility ......................................... 79
   4.1. Volatility at lower frequencies ........................ 79
   4.2. ARCH model ............................................. 81
        4.2.1. Forecasting ..................................... 81
        4.2.2. Kurtosis of an ARCH model ....................... 82
        4.2.3. Testing for ARCH effects ........................ 82
        4.2.4. ARCH-in-mean model .............................. 83
        4.2.5. Illustration .................................... 84
   4.3. GARCH model ............................................ 84
        4.3.1. Forecasting ..................................... 88
        4.3.2. Integrated GARCH model .......................... 89
        4.3.3. Estimation ...................................... 89
        4.3.4. Testing for GARCH effects ....................... 92
        4.3.5. Software to estimate ARCH and GARCH models ...... 92
        4.3.6. Illustration .................................... 93
   4.4. Asymmetric GARCH models ................................ 94
        4.4.1. EGARCH model .................................... 94
        4.4.2. TGARCH model .................................... 95
        4.4.3. GJR model ....................................... 95
        4.4.4. Cox-Box transform ............................... 95
        4.4.5. News impact curve ............................... 96
        4.4.6. Partially non-parametric estimation ............. 96
        4.4.7. Testing for asymmetric effects .................. 97
        4.4.8. Illustration .................................... 99
   4.5. GARCH model with jumps ................................. 99
        4.5.1. A model with time-varying jump intensity ....... 101
        4.5.2. An empirical illustration ...................... 105
   4.6. Aggregation of GARCH processes ........................ 108
        4.6.1. Temporal aggregation ........................... 109
        4.6.2. Cross-sectional aggregation .................... 113
        4.6.3. Estimation of the weak GARCH process ........... 114
   4.7. Stochastic volatility ................................. 115
        4.7.1. From GARCH models to stochastic volatility
               models ......................................... 115
        4.7.2. Estimation of the discrete time SV model ....... 117
   4.8. Realized volatility ................................... 118
        4.8.1. The difficulty to disentangle jumps ............ 119
        4.8.2. Quadratic variation ............................ 123
        4.8.3. Power variation ................................ 124
        4.8.4. Bipower variation .............................. 126
        4.8.5. Estimation over finite time intervals .......... 128
        4.8.6. Realized covariance ............................ 135
        4.8.7. Further related results ........................ 141

5. Modeling Higher Moments .................................... 143
   5.1. The general problem ................................... 144
        5.1.1. Higher moments of a GARCH process .............. 145
        5.1.2. Quasi Maximum Likelihood Estimation ............ 148
        5.1.3. The existence of distribution with given
               moments ........................................ 151
   5.2. Distributions with higher moments ..................... 152
        5.2.1. Semi-parametric approach ....................... 153
        5.2.2. Series expansion about the normal
               distribution ................................... 155
        5.2.3. Skewed Student t distribution .................. 159
        5.2.4. Generating asymmetric distributions ............ 166
        5.2.5. Pearson IV distribution ........................ 169
        5.2.6. Entropy distribution ........................... 172
   5.3. Specification tests and inference ..................... 177
        5.3.1. Moment specification tests ..................... 177
        5.3.2. Adequacy tests based on density forecasts ...... 179
        5.3.3. Adequacy tests based on interval forecasts ..... 180
   5.4. Illustration .......................................... 182
   5.5. Modeling conditional higher moments ................... 188
        5.5.1. Tests for autoregressive conditional higher
               moments ........................................ 189
        5.5.2. Modeling higher moments directly ............... 189
        5.5.3. Modeling the parameters of the distribution .... 191

6. Modeling Correlation ....................................... 195
   6.1. Multivariate GARCH models ............................. 197
        6.1.1. Vectorial and diagonal GARCH models ............ 198
        6.1.2. Dealing with large-dimensional systems ......... 200
        6.1.3. Modeling conditional correlation ............... 206
        6.1.4. Estimation issues .............................. 210
        6.1.5. Specification tests ............................ 212
        6.1.6. Test of constant conditional correlation
               matrix ......................................... 214
        6.1.7. Illustration ................................... 217
   6.2. Modeling the multivariate distribution ................ 223
        6.2.1. Standard multivariate distributions ............ 225
        6.2.2. Skewed elliptical distribution ................. 230
        6.2.3. Skewed Student t distribution .................. 233
        6.2.4. Estimation ..................................... 236
        6.2.5. Adequacy tests ................................. 239
        6.2.6. Illustration ................................... 240
   6.3. Copula functions ...................................... 240
        6.3.1. Definitions and properties ..................... 241
        6.3.2. Measures of concordance ........................ 242
        6.3.3. Non-parametric copulas ......................... 244
        6.3.4. Review of some copula families ................. 245
        6.3.5. Estimation ..................................... 254
        6.3.6. Adequacy tests ................................. 258
        6.3.7. Modeling the conditional dependency
               parameter ...................................... 259
        6.3.8. Illustration ................................... 261

7. Extreme Value Theory ....................................... 265
   7.1. Univariate tail estimation ............................ 266
        7.1.1. Distribution of extremes ....................... 266
        7.1.2. Tail distribution .............................. 276
        7.1.3. The case of weakly dependent data .............. 291
        7.1.4. Estimation of high quantiles ................... 296
   7.2. Multivariate dependence ............................... 300
        7.2.1. Characterizing tail dependency ................. 303
        7.2.2. Estimation and statistical inference
               on χ and χ ..................................... 307
        7.2.3. Modeling dependency ............................ 308
        7.2.4. An illustration ................................ 309
        7.2.5. Further investigations ......................... 311

Part III. Applications of Non-Gaussian Econometrics

8. Risk Management and VaR .................................... 315
   8.1. Definitions and measures .............................. 316
        8.1.1. Definitions .................................... 316
        8.1.2. Models for portfolio returns ................... 320
   8.2. Historical simulation ................................. 321
   8.3. Semi-parametric approaches ............................ 322
        8.3.1. Extreme Value Theory (EVT) ..................... 324
        8.3.2. Quantile regression technique .................. 328
   8.4. Parametric approaches ................................. 330
        8.4.1. RiskMetrics - J.P. Morgan ...................... 331
        8.4.2. The portfolio-level approach ................... 334
        8.4.3. The asset-level approach ....................... 337
   8.5. Non-linear models ..................................... 341
        8.5.1. The "delta-only" method ........................ 341
        8.5.2. The "delta-gamma" method ....................... 341
   8.6. Comparison of VaR models .............................. 342
        8.6.1. Evaluation of VaR models ....................... 343
        8.6.2. Comparison of methods .......................... 343
        8.6.3. 10-day VaR and scaling ......................... 344
        8.6.4. Illustration ................................... 345

9. Portfolio Allocation ....................................... 349
   9.1. Portfolio allocation under non-normality .............. 349
        9.1.1 Direct maximization of expected utility ......... 350
        9.1.2. An approximate solution based on moments ....... 353
   9.2. Portfolio allocation under downside risk .............. 359
        9.2.1. Definition ..................................... 360
        9.2.2. Downside risk as an additional constraint ...... 360
        9.2.3. Downside risk as an optimization criterion ..... 361

Part IV. Option Pricing with Non-Gaussian Returns

10. Fundamentals of Option Pricing ............................ 365
    10.1. Notations ........................................... 366
    10.2. The no-arbitrage approach to option pricing ......... 369
          10.2.1. Choice of a stock price process ............. 369
          10.2.2. The fundamental partial differential
                  equation .................................... 371
          10.2.3. Solving the fundamental PDE ................. 373
          10.2.4. The Black-Scholes-Merton formula ............ 375
    10.3. Martingale measure and BSM formula .................. 377
          10.3.1. Self-financing strategies and portfolio
                  construction ................................ 377
          10.3.2. Change of numeraire ......................... 378
          10.3.3. Change of Brownian motion ................... 378
          10.3.4. Evolution of St under Q ..................... 379
          10.3.5. The expected pay-off as a martingale ........ 379
          10.3.6. The trading strategies ...................... 380
          10.3.7. Equivalent martingale measure ............... 381

11. Non-structural Option Pricing ............................. 383
    11.1. Difficulties with the standard BSM model ............ 384
    11.2. Direct estimation of the risk-neutral density ....... 385
          11.2.1. Expression for the RND ...................... 385
          11.2.2. Estimating the parameters of the RND ........ 387
    11.3. Parametric methods .................................. 389
          11.3.1. Mixture of log-normal distributions ......... 389
          11.3.2. Mixtures of hypergeometric functions ........ 394
          11.3.3. Generalized beta distribution ............... 395
    11.4. Semi-parametric methods ............................. 395
          11.4.1. Edgeworth expansions ........................ 395
          11.4.2. Hermite polynomials ......................... 399
    11.5. Non-parametric methods .............................. 402
          11.5.1. Spline methods .............................. 402
          11.5.2. Tree-based methods .......................... 406
          11.5.3. Maximum entropy principle ................... 407
          11.5.4. Kernel regression ........................... 408
    11.6. Comparison of various methods ....................... 409
    11.7. Relationship with real probability .................. 414
          11.7.1. The link between RNDs and objective
                  densities ................................... 414
          11.7.2. Empirical findings .......................... 416

12. Structural Option Pricing ................................. 417
    12.1. Stochastic volatility model ......................... 417
          12.1.1. The square root process ..................... 418
          12.1.2. Solving the PDE based on characteristic
                  function .................................... 419
          12.1.3. A new partial differential equation ......... 422
    12.2. Option pricing with stochastic volatility ........... 425
          12.2.1. Hull and White (1987, 1988) ................. 425
          12.2.2. Heston (1993) ............................... 426
          12.2.3. Characteristic function of the SV model ..... 428
          12.2.4. Further insights ............................ 429
    12.3. Models with jumps ................................... 432
          12.3.1. Stochastic process with jumps ............... 432
          12.3.2. Diffusion with double exponential jumps ..... 434
          12.3.3. Combining stochastic volatility with
                  jumps ....................................... 436
          12.3.4. Jumpy affine models ......................... 440
    12.4. Models with even wilder jumps: Levy option
          pricing ............................................. 441
          12.4.1. Commonly used Levy processes ................ 443
          12.4.2. Choice of the time-changing process ......... 444
          12.4.3. Option pricing .............................. 445
          12.4.4. Pricing options with risk-neutral
                  characteristic function ..................... 446
          12.4.5. Empirical results ........................... 447

Part V. Appendices on Option Pricing Mathematics

13. Brownian Motion and Stochastic Calculus ................... 451
    13.1. Law of large numbers and the central limit
          theorem ............................................. 451
    13.2. Random walks ........................................ 453
    13.3. Construction of the Brownian motion ................. 453
    13.4. Properties of the Brownian motion ................... 456
    13.5. Stochastic integration .............................. 457
    13.6. Stochastic differential equations ................... 459
    13.7. Ito's lemma ......................................... 460
    13.8. Multivariate extension of Ito's lemma ............... 462
    13.9. Transition probabilities and partial differential
          equations ........................................... 463
    13.10. Kolmogorov backward and forward equations .......... 464
    13.11. PDE associated with diffusions ..................... 466
    13.12. Feynman-Kac formula ................................ 468

14. Martingale and Changing Measure ........................... 471
    14.1. Martingales ......................................... 471
    14.2. Changing probability of a normal distribution ....... 472
    14.3. Radon-Nikodym derivative ............................ 473
    14.4. Girsanov's theorem .................................. 474
    14.5. Martingale representation theorem ................... 475

15. Characteristic Functions and Fourier Transforms ........... 477
    15.1. Characteristic functions ............................ 477
          15.1.1. Basic properties ............................ 478
          15.1.2. Moments and the characteristic function ..... 478
          15.1.3. Convolution theorem ......................... 479
          15.1.4. Uniqueness .................................. 480
          15.1.5. Inversion theorem ........................... 480
    15.2. Fourier transform and characteristic function ....... 483

16. Jump Processes ............................................ 487
    16.1. Counting and marked point process ................... 487
    16.2. The Poisson process ................................. 489
          16.2.1. Construction of the Poisson distribution .... 489
          16.2.2. Properties of the Poisson distribution ...... 491
          16.2.3. Moments of pure Poisson process ............. 492
          16.2.4. Compound Poisson process .................... 493
    16.3. The exponential distribution ........................ 494
          16.3.1. Definition and properties ................... 494
          16.3.2. Moments of the exponential variable ......... 495
          16.3.3. Hazard and survivor functions ............... 496
    16.4. Duration between Poisson jumps ...................... 497
    16.5. Compensated Poisson processes ....................... 498

17. Levy Processes ............................................ 501
    17.1. Construction of the Levy process .................... 501
    17.2. Properties of Levy processes ........................ 505

References .................................................... 507

Index ......................................................... 535


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:26 2019. Размер: 24,550 bytes.
Посещение N 1647 c 26.04.2010