Srinivasan S. Fuel cells (Вerlin, 2006). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаSrinivasan S. Fuel cells: from fundamentals to applications. - Вerlin: Springer, 2006. - 691 p. - ISBN 0-387-25116-2
 

Оглавление / Contents
 
FOREWORD ........................................................ v
PUBLISHERS PREFACE ............................................. ix
A TRIBUTE .................................................... xxix

Part I: BASIC AND APPLIED ELECTROCHEMISTRY AS RELEVANT TO FUEL
        CELLS

Chapter 1
EVOLUTION OF ELECTROCHEMISTRY
1.1.   Electrochemistry: A Field Born Out Of Chemistry And
       Electricity .............................................. 3
1.2.   Scope of Electrochemistry ................................ 5
1.2.1. Electrochemistry and Surface Science
       (Wet Electrochemistry) ................................... 5
1.2.2. Solid-State Science (Dry Electrochemistry) ............... 7
1.2.3. Colloid and Surface Science .............................. 9
1.2.4. Membrane Phenomena ...................................... 10
1.2.5. Bioelectrochemistry/Biomedical Sciences ................. 10
1.2.6. Electrochemical Engineering ............................. 11
1.2.7. Electrochemical Technology .............................. 12
1.2.8. Environmental Electrochemistry .......................... 12
1.3.   Types of Electrochemical Reactions ...................... 13
1.3.1. Gas Evolution and Gas Consumption ....................... 13
1.3.2. Metal Deposition and Dissolution ........................ 14
1.3.3. Redox Reactions ......................................... 14
1.3.4. Electrodes of the Second Kind ........................... 14
1.3.5. Corrosion/Passivation ................................... 15
1.3.6. Electroorganic Reactions ................................ 16
1.3.7. Photoelectrochemical Reactions .......................... 16
1.3.8. Bioelectrochemistry and Electrophysiology ............... 17
1.4.   Potentials at Electrode/Electrolyte Interfaces and
       Electromotive Series .................................... 18
1.5.   Free Energy Changes of Reactions and their Reversible
       Potentials (Nernst Potentials) .......................... 21
Cited References ............................................... 24
Problems ....................................................... 24

Chapter 2
ELECTRODE/ELECTROLYTE INTERFACES: STRUCTURE AND KINETICS OF
CHARGE TRANSFER
2.1.   Double Layer at electrode/electrolyte interfaces ........ 27
2.1.1. Structure, Charge, and Capacitance Characteristics ...... 27
       2.1.1.1. Parallel Plate Condenser Model: Helmholtz
                Model .......................................... 28
       2.1.1.2. Diffuse Layer Model: Gouy and Chapman Model .... 28
       2.1.1.3. Compact-Diffuse Layer Model: Stern Model ....... 31
       2.1.1.4. Triple Layer Model: Esin and Markov, Grahame,
                and Devanathan Model ........................... 32
       2.1.1.5. Water Dipole Model: Bockris-Devanathan-Muller
                Model .......................................... 32
2.1.2. Effect of Specific Adsorption of Ions on the Double
       Layer Structure and their Adsorption Isotherms .......... 34
       2.1.2.1. The Region of Constant Capacity at Negative
                Potentials ..................................... 34
       2.1.2.2. Capacity Hump .................................. 34
2.1.3. Effect of Adsorption of Neutral Molecules on
       the Structure of the Double Layer ....................... 37
2.1.4. Brief Analysis of Structures of Semiconductor/
       Electrolyte and Insulator/Electrolyte Interfaces ........ 41
2.2.   Vital Need for Multi-Disciplinary Approach .............. 44
2.3.   Single and Multi-Step Reactions ......................... 46
2.4.   Concept of Rate-Determining Step ........................ 48
2.5.   Dependence of Current Density on Potential for
       Activation Controlled Reactions: Theoretical Analysis ... 53
2.5.1. Classical Treatment to Determine Electrode Kinetic
       Parameters .............................................. 53
       2.5.1.1. Expression for Current Density as a Function
                of Potential ................................... 56
       2.5.1.2. Reaction Orders, Transfer Coefficients, and
                Stoichiometric Numbers ......................... 58
       2.5.1.3. Exchange Current Density and Reversible
                Potential ...................................... 59
2.5.2. Quantum Mechanical Treatment ............................ 61
2.6.   Concept of Activation Overpotential, Expression for
       current Density as a Function of Activation
       Overpotential, and Charge Transfer Resistance ........... 65
2.7.   Other Types of Rate Limitations and Overpotentials and
       their Effects on Current Density Potential Behavior ..... 68
2.7.1. Mass Transport Overpotential ............................ 68
2.7.2. Case of Activation Plus Diffusion Controlled
       Reactions ............................................... 72
2.7.3. Ohmic Overpotential ..................................... 73
2.8.   Electrocatalysis ........................................ 74
2.8.1. Electrocatalysis Vital Role in Electrosynthesis and
       Electrochemical Energy Conversion and Storage ........... 74
2.8.2. Distinctive Features of Electrocatalysis ................ 75
       2.8.2.1. Net-electron Transfer in
                Overall-Electrocatalytic Reaction .............. 75
       2.8.2.2. Wide Range of Reaction Rates Attained by
                Altering the Potential Across the Interface
                at Constant Temperature ........................ 75
       2.8.2.3. An Electrochemical Pathway for Chemical
                Reactions ...................................... 75
       2.8.2.4. Different Products in Different Ranges of
                Potential ...................................... 76
       2.8.2.5. Change in Path of Reactions Using Redox
                Systems ........................................ 76
       2.8.2.6. In-Situ Reactivation of Electrocatalysts ....... 76
       2.8.2.7. Electrochemical Nature of Biological
                Reactions ...................................... 77
2.8.3. Similarities Between Electrocatalysis and
       Heterogeneous Catalysis ................................. 77
       2.8.3.1. Effect of Geometric Factors .................... 77
       2.8.3.2. Electronic Factors ............................. 78
2.8.4. At What Potentials Should One Compare Reaction Rates
       to Elucidate the Roles of Electronic and Geometric
       Factors? ................................................ 81
2.9.   Adsorption Isotherms and Pseudocapacitance .............. 81
2.9.1. Types of Adsorption Isotherms and Their Influence on
       Electrode Kinetics and Electrocatalysis ................. 81
       2.9.1.1. Langmuir Isotherm .............................. 81
       2.9.1.2. Temkin Isotherm ................................ 84
2.9.2. Adsorption Pseudocapacitance ............................ 86
       2.9.2.1. What is Pseudocapacitance? ..................... 86
       2.9.2.2. Theoretical Analysis of Dependence of
                Pseudocapacitance on the Type of Adsorption
                Isotherm ....................................... 87
       2.9.2.3. Electrical Equivalent Circuits for Reactions
                Exhibiting Pseudocapacitances .................. 89
Suggested Reading .............................................. 89
Cited References ............................................... 90
Problems ....................................................... 90

Chapter 3
ELECTROCHEMICAL TECHNOLOGIES AND APPLICATIONS
3.1.   Role of Electrochemical Technologies in Chemical
       Industry ................................................ 93
3.1.1. Background .............................................. 93
3.1.2. Principles of Technologies .............................. 93
3.2.   Aluminum Production ..................................... 98
3.2.1. Background and Applications ............................. 98
3.2.2. Principles of Technology ................................ 99
3.2.3. Economics .............................................. 101
3.2.4. Energy Conservation Measures ........................... 102
3.2.5. Benefits to or from Fuel Cell Technologies ............. 104
3.3.   Chlor-Alkali Technology ................................ 104
3.3.1. Background and Applications ............................ 104
3.3.2. Principles of Technology ............................... 104
3.3.3. Economics .............................................. 113
3.3.4. Benefits to or from Fuel Cell Technologies ............. 113
3.4.   Electro-Organic Synthesis .............................. 115
3.4.1. Background and Applications ............................ 115
3.4.2. Principles of Technology ............................... 116
3.4.3. Economics .............................................. 125
3.4.4. Benefits to or from Fuel Cell Technology ............... 125
3.5.   Electrowinning and Refining of Metals .................. 126
3.5.1. Background and Applications ............................ 126
3.5.2. Principles of Technology ............................... 126
3.5.3. Economics .............................................. 133
3.5.4. Benefits to or from Fuel Cell Technology ............... 134
3.6.   Corrosion Inhibition/Passivation ....................... 136
3.6.1. Background ............................................. 136
3.6.2. Principles of Technologies ............................. 137
3.6.3. Benefits to or from Fuel Cell Technologies ............. 139
3.7.   Electrochemical Energy Storage ......................... 141
3.7.1. Background ............................................. 141
3.7.2. Primary Batteries ...................................... 143
       3.7.2.1. Zinc/Manganese Dioxide ........................ 143
       3.7.2.2. Zinc/Air ...................................... 146
       3.7.2.3. Lithium ....................................... 149
3.7.3. Secondary Batteries .................................... 151
       3.7.3.1. Lead Acid ..................................... 151
       3.7.3.2. Nickel/Hydrogen ............................... 154
       3.7.3.3. Nickel/Cadmium ................................ 158
       3.7.3.4. Nickel/Metal Hydride .......................... 161
       3.7.3.5. Lithium - Ion ................................. 163
3.7.4. Reserve Batteries ...................................... 169
       3.7.4.1. Background and Rationale ...................... 169
       3.7.4.2. Mg-Seawater Activated ......................... 170
3.7.5. Thermal Batteries ...................................... 171
       3.7.5.1. Background and Rationale ...................... 171
       3.7.5.2. Principles of Technology and Performance
                Characteristics ............................... 171
3.7.6. Electrochemical Capacitors ............................. 173
       3.7.6.1. Introduction .................................. 173
       3.7.6.2. Principles of Technology ...................... 173
       3.7.6.3. Applications and Economics .................... 179
       3.7.6.4. Benefits to or from Fuel Cell Technology ...... 180
3.8.   Electrochemical Sensors ................................ 181
3.8.1. Background and Rationale ............................... 181
3.8.2. Principles of Technology ............................... 181
3.8.3. Applications and Economics ............................. 182
3.8.4. Benefits to or from Fuel Cell Technology ............... 182
Suggested Reading ............................................. 183
Cited References .............................................. 183
Problems ...................................................... 186


Part II: FUNDAMENTAL ASPECTS FOR RESEARCH AND DEVELOPMENT OF
         FUEL CELLS

Chapter 4
FUEL CELL PRINCIPLES
4.1.   Scope of Chapter ....................................... 189
4.2.   Basic Similarities and Dissimilarities among
       the Three Types of Electrochemical Technologies ........ 191
4.2.1. Table 4.1 .............................................. 194
4.2.2. Table 4.2 .............................................. 195
4.3.   Types Of Fuel Cells .................................... 196
4.3.1. Evolutionary Aspects of Fuel Cells and their
       Classifications ........................................ 196
4.3.2. Inventions and Demonstrations in 20th and 21st
       Century ................................................ 200
       4.3.2.1.  1904-1907 .................................... 200
       4.3.2.2.  1910-1939 .................................... 200
       4.3.2.3.  1932-1952 .................................... 200
       4.3.2.4.  1938-1971 .................................... 200
       4.3.2.5.  1935-1937 .................................... 200
       4.3.2.6.  1948-1975 .................................... 200
       4.3.2.7.  1950-1965 .................................... 201
       4.3.2.8.  1938-1965 .................................... 201
       4.3.2.9.  1959-1982 .................................... 201
       4.3.2.10. 1965-1995 .................................... 201
       4.3.2.11. 1958-present ................................. 201
       4.3.2.12. 1965-present ................................. 202
4.4.   Thermodynamic Aspects .................................. 202
4.4.1. Standard Free Energy and Enthalpy Change of a Fuel
       Cell Reaction .......................................... 202
4.4.2. Effect of Temperature and Pressure on
       the Thermodynamic-Reversible Potential, Er ............. 204
4.4.3. Thermodynamic Data for Some Fuel Cell Reactions ........ 205
4.5.   Electrode Kinetic Aspects .............................. 206
4.5.1. Single Cell: the Heart of the Fuel Cell ................ 206
4.5.2. Role of Electrode Kinetics and Electrocatalysis on
       the Performance of Fuel Cells .......................... 206
4.5.3. Cell Potential-Current Density Behavior of Fuel
       Cells .................................................. 207
4.6.   Analysis of Fuel Cell Performance Characteristics ...... 208
4.6.1. Cell Potential ......................................... 208
4.6.2. Efficiency ............................................. 209
4.6.3. Differential Resistance ................................ 210
4.6.4. Power Density .......................................... 210
4.6.5. Rate of Heat Generation ................................ 211
4.7.   Effects of Electrode Kinetic Parameters on
       Performance characteristics of PEMFCS and DMFCS ........ 212
4.7.1. Rationale for Selection of PEMFCs and DMFCs ............ 212
4.7.2. Methodology for Analysis ............................... 213
4.7.3. Effect of Exchange-Current Density ..................... 215
4.7.4. Tafel Slope ............................................ 221
4.7.5. Ohmic Resistance ....................................... 221
4.7.6. Mass Transport Parameters .............................. 222
Suggested Reading ............................................. 227
Cited References .............................................. 232
Problems ...................................................... 232

Chapter 5
ELECTROCATALYSIS OF FUEL CELL REACTIONS
5.1.   Introduction ........................................... 235
5.1.1. Kinetics ............................................... 236
5.1.2. Electrocatalysis ....................................... 237
5.1.3. Electrocatalysts ....................................... 238
5.2.   Fuel-Cell Reactions in Acid and Alkaline Fuel Cells .... 239
5.2.1. Oxygen Reduction in Acid Electrolytes .................. 239
5.2.2. Oxygen Reduction in Alkaline Electrolytes .............. 245
5.2.3. Hydrogen Oxidation in Acid Media ....................... 246
5.2.4. Hydrogen Oxidation in Alkaline Media ................... 251
5.2.5. Methanol Oxidation in Acid Media ....................... 251
5.2.6. Methanol Oxidation in Alkaline Media ................... 258
5.3.   High-Temperature Fuel Cells ............................ 258
5.3.1. Molten-Carbonate Fuel Cell (MCFC) ...................... 259
5.3.2. Solid-Oxide Fuel Cell (SOFC) ........................... 260
Cited References .............................................. 262

Chapter 6
EXPERIMENTAL METHODS IN LOW TEMPERATURE FUEL CELLS
6.1.   Catalyst ............................................... 268
6.1.1. Preparation Techniques ................................. 268
6.1.2. Catalyst Characterization: Physical .................... 269
6.1.3. Catalyst Characterization: Electrochemical ............. 271
       6.1.3.1. Cyclic Voltammetric (CV) Measurements ......... 271
       6.1.3.2. Rotating Disk Electrode (RDE) Method .......... 272
6.2.   Electrode .............................................. 275
6.2.1. Fabrication of Gas Diffusion Electrodes ................ 276
       6.2.1.1. Electrode Preparation ......................... 276
6.2.2. Physical Characterization .............................. 278
       6.2.2.1. Electronic Resistivity ........................ 279
       6.2.2.2. Porosimetry ................................... 279
6.2.3. Electrochemical Characterization ....................... 280
       6.2.3.1. Cyclic-Voltammetric Evaluation ................ 280
       6.2.3.2. Polarization Studies .......................... 280
       6.2.3.3. Half-Cell Testing with Dissolved Fuel ......... 280
       6.2.3.4. Gas-diffusion Electrode Evaluation ............ 280
       6.2.3.5. Floating-Electrode Method ..................... 282
6.2.4. Choice of Reference Electrode for Half-Cell Studies .... 282
6.3.   Full Cell .............................................. 286
6.3.1. MEA Fabrication ........................................ 286
       6.3.1.1. Hot-Pressing Method ........................... 286
       6.3.1.2. Decal-Transfer Method ......................... 286
       6.3.1.3. Reference Electrode Incorporation in Full
                Cells ......................................... 287
6.3.2. Liquid-Electrolyte Cells ............................... 287
6.3.3. Cell Hardware and Cell Build ........................... 289
6.3.4. Instrumentation ........................................ 291
6.3.5. Cell Start-Up Procedures ............................... 293
       6.3.5.1. Wet-Up Process ................................ 293
       6.3.5.2. Cross-Over Test ............................... 293
       6.3.5.3. Break-In Procedure ............................ 293
6.3.6. Cell Testing - Н2O2 Cells .............................. 294
       6.3.6.1.	Open-Circuit Test ............................. 294
       6.3.6.2.	Cell Voltage as a Function of Current
                Density ....................................... 294
       6.3.6.3.	Reactant Flow Rates ........................... 295
       6.3.6.4.	Humidification Level .......................... 295
       6.3.6.5.	Effect of Reactant Pressure ................... 295
6.3.7. Diagnostic Methods: H2/O2 Cells ........................ 295
       6.3.7.1. Resistance Measurement ........................ 295
       6.3.7.2. Polarization Data Analysis .................... 298
       6.3.7.3. Catalyst Activity ............................. 299
       6.3.7.4. In-Situ CV Experiment ......................... 300
       6.3.7.5. Limiting currents (N2/O2 vs. He/O2) ............ 301
       6.3.7.6. Impedance Spectroscopy ........................ 302
6.3.8. Cell Testing: DMFC ..................................... 302
       6.3.8.1. Differences ................................... 302
       6.3.8.2. Open Circuit Voltage .......................... 303
       6.3.8.3. Current-Voltage Performance ................... 303
       6.3.8.4. Cross-Over and Fuel Efficiency
                Determination ................................. 303
6.3.9. Diagnostics: DMFC ...................................... 304
6.4.   Post Cell Test Analyses ................................ 305
6.4.1. Catalyst Area .......................................... 305
       6.4.1.1. Electrochemical Methods ....................... 305
       6.4.1.2. Physical Methods .............................. 305
Cited References .............................................. 306


Part III: ENGINEERING AND TECHNOLOGY DEVELOPMENT ASPECTS OF
          FUEL CELLS

Chapter 7
MODELING ANALYSES: FROM HALF-CELL TO SYSTEMS
7.1.   General Overview of Modeling Analyses .................. 311
7.1.1. The Role of Simulation in Fuel Cell R&D ................ 311
7.1.2. Modeling of Electrode and Electrolyte Overpotentials ... 313
7.2.   Modeling of Half-cell reactions: Electrode Potential
       versus Current Density Behavior and Current
       Distribution in Active Layer ........................... 314
7.2.1. Vital Need of Porous Gas Diffusion Electrodes for
       Fuel Cells to Enhance 3-D Reaction Zone ................ 314
7.2.2. Evolution of Physicochemical Models for Porous
       Gas-Diffusion Electrodes and Performance Analyses ...... 317
       7.2.2.1. Simple Pore Model with Parallel Cylindrical
                Pores ......................................... 317
       7.2.2.2. Thin Film Model ............................... 319
       7.2.2.3. Finite Contact Angle Meniscus Model ........... 320
       7.2.2.4. Intersecting Pore Model ....................... 320
       7.2.2.5. Agglomerate Model ............................. 322
       7.2.2.6. Macro-Homogeneous Model ....................... 324
7.2.3. General Treatment Based on Three Basic Equations ....... 324
       7.2.3.1. Basic Aspects Relevant to All Types of Fuel
                Cells ......................................... 324
       7.2.3.2. Application to 3-Phase Electrodes
                (PEMFC, AFC, PAFC, DMFC, and MCFC):
                the Agglomerate Model ......................... 328
       7.2.3.3. Application to 2-Phase Electrodes (SOFC):
                Simulation of Composite Electrodes ............ 335
7.3.   Electrolyte Overpotentials: Limits of Applicability
       of Ohm's Law ........................................... 340
7.3.1. General Treatment of Electrolyte Overpotentials ........ 340
       7.3.1.1. Nafion Electrolyte: Water Transport Problems
                and Their Effect on Electrical Conductivity ... 343
7.4.   Additional efficiency losses at single-cell level ...... 348
7.4.1. Overview ............................................... 348
7.4.2. Mass Balances .......................................... 349
7.4.3. Energy Balance in Gaseous Phase ........................ 350
7.4.4. Energy Balance of Solid Structure ...................... 351
7.4.5. Numerical Integration and Boundary Conditions .......... 351
7.4.6. Application to PEMFCs .................................. 351
7.4.7. Application to SOFCs ................................... 356
7.5.   Further efficiency losses in cell stacks ............... 359
7.5.1. Overview	 .............................................. 359
7.5.2. Fluid Dynamics of Fuel Cell Stacks ..................... 360
7.5.3. Impact of Fluid-Dynamic Effects on Stack Performance ... 362
7.6.   Modeling Of Fuel Cell Power Plants ..................... 363
7.6.1. Overview ............................................... 363
7.6.2. Example: Simulation of a 300 kWc SOFC/Gas Turbine
       Hybrid System .......................................... 364
Suggested Reading ............................................. 369
Problems ...................................................... 371

Chapter 8
FUELS: PROCESSING, STORAGE, TRANSMISSION, DISTRIBUTION,
AND SAFETY
8.1.   Hydrogen: The Ideal Fuel ............................... 375
8.1.1. Hydrogen: The Most Electroactive and Environmentally
       Clean Fuel for All Types of Fuel Cells ................. 375
8.1.2. A Modus Operandi fora Hydrogen Energy Scenario ......... 378
8.1.3. Fossil Fuels: The Main Source of Hydrogen for
       the Foreseeable Future ................................. 380
8.1.4. Natural Gas: The Most Promising Fuel for All Types of
       Fuel Cells ............................................. 381
8.1.5. Coal Gasifiers for Hydrogen Production ................. 383
8.2.   Fuel Processors for Integration with Fuel Cells ........ 384
8.2.1. Steam-Reforming, Shift-Conversion, Pressure Swing,
       and Adsorption of Natural Gas for Ultra-Pure H2
       Production for AFCs and PEMFCs ......................... 384
8.2.2. Steam Reforming, Shift Conversion, and Preferential
       Oxidation of Natural Gas, Gasoline or Methanol for
       PEMFCs ................................................. 385
8.2.3. Steam-Reforming and Shift-Conversion of Natural Gas
       or Methanol for H2 Production for PAFCs ................ 388
8.2.4. Partial Oxidation and Shift Conversion of
       Hydrocarbons and Alcohols for PEMFCs ................... 389
8.2.5. Autothermal Reforming of Methanol and Gasoline for
       PEMFC Powered Vehicles ................................. 390
8.2.6. Steam Reforming of Natural Gas for MCFC or SOFC:
       Gas Turbine Hybrids .................................... 394
8.2.7. Coal Gasifiers for SOFC/Gas Turbine Hybrids, with H2
       Separation and CO2 Sequestration ....................... 397
8.3.   Hydrogen Production From Nuclear And Renewable Energy
       Resources .............................................. 398
8.3.1. Role of Nuclear and Renewable Energy Resources ......... 398
8.3.2. Water Electrolysis ..................................... 400
       8.3.2.1. Thermodynamic and Electrode Kinetic Aspects ... 400
       8.3.2.2. Types of Water Electrolyzers and Status of
                Technologies .................................. 402
8.3.3. Photoelectrolysis ...................................... 407
8.3.4. Thermochemical Decomposition of Water .................. 409
8.3.5. Biomass Fuel Production and Conversion to Hydrogen ..... 411
8.3.6. Biological/Biochemical Production of Hydrogen .......... 413
8.4.   Other Fuels for Direct or Indirect Utilization in
       Fuel Cells ............................................. 414
8.4.1. Partially-Oxygenated Carbonaceous Fuels ................ 414
       8.4.1.1. Methanol and Ethanol .......................... 414
       8.4.1.2. Dimethyl Ether (DME) .......................... 416
8.4.2. Nitrogenous Fuels ...................................... 417
       8.4.2.1. General Comments .............................. 417
       8.4.2.2. Ammonia ....................................... 418
       8.4.2.3. Hydrazine ..................................... 419
8.5.   Fuel Storage ........................................... 419
8.5.1. Hydrogen ............................................... 419
       8.5.1.1. Multifold Options but Many Challenges ......... 419
       8.5.1.2. Compressed Hydrogen Stored Underground for
                Power Generation .............................. 419
       8.5.1.3. Compressed Hydrogen Storage in Cylinders
                Tanks for Transportation and Portable Power ... 421
       8.5.1.4. Liquid Hydrogen Storage for Space, Military,
                and Transportation Applications ............... 421
       8.5.1.5. Solid Storage of Hydrogen as Metal Hydrides ... 424
8.5.2. Hydrogen Storage in Combination with Other Elements
       or Compounds ........................................... 429
8.5.3. Techno-economic Analysis of Hydrogen Storage ........... 429
8.6.   Fuel Transmission and Distribution: Hydrogen Versus
       other Alternate Fuels .................................. 430
8.7.   Fuel Safety: Hydrogen versus Alternate Fuels ........... 431
Suggested Reading ............................................. 432
Cited References .............................................. 434
Problems ...................................................... 436


Part IV: APPLICATIONS, TECHNO-ECONOMIC ASSESSMENTS,
         AND PROGNOSIS OF FUEL CELLS

Chapter 9
STATUS OF FUEL CELL TECHNOLOGIES
9.1.   Scope of Chapter ....................................... 441
9.2.   Proton Exchange Membrane Fuel Cells (PEMFC) ............ 442
9.2.1. Evolutionary Aspects ................................... 442
9.2.2. Research and Development of High Performance Single
       Cells .................................................. 444
       9.2.2.1.	Design, Component Materials and Assembly ...... 444
       9.2.2.2.	Optimization of Structure of Membrane and
                Electrode Assembly (MEA) ...................... 446
       9.2.2.3.	Mode of Operation/Operating Conditions ........ 450
       9.2.2.4.	Physicochemical Characterization of Single
                Cell and its Components ....................... 451
       9.2.2.5.	Performance Characteristics of Single Cells ... 459
9.2.3. Technology Development of Cell Stacks .................. 476
       9.2.3.1.	Scale-up of Single Cells ...................... 476
       9.2.3.2.	Bipolar Plates and Flow Fields ................ 477
       9.2.3.3.	Assembly of Electrochemical Cells Stacks ...... 478
       9.2.3.4.	Water Management .............................. 479
       9.2.3.5.	Thermal Management ............................ 481
       9.2.3.6.	Performance Evaluation ........................ 484
9.3.   Direct Methanol Fuel Cells (DMFC) ...................... 484
9.3.1. Evolutionary Aspects ................................... 484
9.3.2. Research and Development of High Performance Single
       Cells .................................................. 486
       9.3.2.1. Cell Design and Assembly ...................... 486
       9.3.2.2. Performance Characteristics ................... 488
9.3.3. Technology Development of Cell Stacks .................. 492
       9.3.3.1. Low Power Level (100W - 5kW) .................. 492
       9.3.3.2. Ultra-Low Power Levels (1 to 100W) ............ 494
9.4.   Alkaline Fuel Cells (AFC) .............................. 497
9.4.1. Evolutionary Aspects ................................... 497
9.4.2. Research and Development of High Performance Single
       Cells .................................................. 498
       9.4.2.1. Cell Design, Assembly and Operating
                Conditions .................................... 498
       9.4.2.2. Performance Characteristics ................... 501
       9.4.2.3. Technology Development of Cell Stacks ......... 502
9.5.   Phosphoric-Acid Fuel Cells (PAFC) ...................... 505
9.5.1. Evolutionary Aspects ................................... 505
9.5.2. Research and Development of High-Performance Single
       Cells .................................................. 508
       9.5.2.1. Design, Assembly and Operating Conditions ..... 508
       9.5.2.2. Performance Characteristics ................... 508
9.5.3. Technology Development of Cell Stacks .................. 513
9.6.   Molten Carbonate Fuel Cells (MCFC) ..................... 515
9.6.1. Evolutionary Aspects ................................... 515
9.6.2. Single cells ........................................... 515
       9.6.2.1. Design, Assembly and Operating Conditions ..... 515
       9.6.2.2. Performance Characteristics ................... 517
9.6.3. Cell Stacks ............................................ 525
       9.6.3.1. Design, Assembly and Operating
                Characteristics ............................... 525
       9.6.3.2. Performance Characteristics ................... 527
9.7.   Solid-Oxide Fuel Cells (SOFC) .......................... 528
9.7.1. Evolutionary Aspects ................................... 528
9.7.2. Single Cells ........................................... 529
       9.7.2.1. Design, Assembly and Operating Conditions ..... 529
       9.7.2.2. Performance Characteristics ................... 536
9.7.3. Cell Stacks: Design, Assembly and Performance
       Characteristics ........................................ 539
       9.7.3.1. Siemens-Westinghouse Tubular SOFCs ............ 539
       9.7.3.2. Planar SOFCs .................................. 540
9.8.   Comparative Assessment of Six Leading Fuel Cell
       Technologies ........................................... 542
9.8.1. Essential Characteristics: Single Cell Level ........... 542
       9.8.1.1. General Comments .............................. 542
       9.8.1.2. Fuel .......................................... 544
       9.8.1.3. Operating Temperature ......................... 544
       9.8.1.4. Electrolyte and Ionic Conductor ............... 544
       9.8.1.5. Efficiency and Power Density .................. 546
       9.8.1.6. Electrocatalysts/Loadings ..................... 546
       9.8.1.7. Poisoning Species ............................. 547
       9.8.1.8. Lifetime/Degradation Rate ..................... 547
9.8.2. Cell Stacks ............................................ 548
       9.8.2.1. General Comments .............................. 548
       9.8.2.2. Electrode Area ................................ 548
       9.8.2.3. Bipolar Plate ................................. 548
       9.8.2.4. Rated Power ................................... 551
       9.8.2.5. Cogeneration .................................. 551
       9.8.2.6. Efficiency .................................... 551
       9.8.2.7. Coolant ....................................... 551
       9.8.2.8. Lifetime ...................................... 552
9.8.3. Techno-Economic Challenges to Reach Era of Terrestrial
       Applications in the 21st Century ....................... 552
       9.8.3.1. PEMFCs ........................................ 552
       9.8.3.2. DMFCs ......................................... 553
       9.8.3.3. AFCs .......................................... 553
       9.8.3.4. PAFCs ......................................... 553
       9.8.3.5. MCFCs ......................................... 553
       9.8.3.6. SOFCs ......................................... 553
9.9.   Other Types of Fuel Cells .............................. 554
9.9.1. Carbonaceous Fuels ..................................... 554
       9.9.1.1. Higher Hydrocarbons ........................... 554
       9.9.1.2. Direct Ethanol Fuel Cells (DMFC) .............. 556
9.9.2. Nitrogeneous Fuels ..................................... 558
       9.9.2.1. Ammonia ....................................... 558
       9.9.2.2. Hydrazine ..................................... 559
9.9.3. Metal Fuels ............................................ 560
       9.9.3.1. Zinc .......................................... 560
       9.9.3.2. Aluminum ...................................... 561
9.9.4. Regenerative Fuel Cells ................................ 561
       9.9.4.1. Electrical: Hydrogen/Oxygen and Hydrogen/
                Halogen ....................................... 561
       9.9.4.2. Solar: Photovoltatic Power Plants for
                the Decomposition of H2 and HBr ............... 563
9.9.5. Thermal ................................................ 564
9.9.6. Radiochemical .......................................... 564
9.9.7. Biochemical ............................................ 565
       9.9.7.1. Biogalvanic Cells ............................. 565
       9.9.7.2. Biofuel Cells ................................. 566
       9.9.7.3. The Predominantly Electrochemical Nature of
                Biological Power Producing Reactions .......... 568
Cited References .............................................. 569

Chapter 10
APPLICATIONS AND ECONOMICS OF FUEL-CELL POWER PLANTS/
POWER SOURCES
10.1.   Scope of Chapter ...................................... 575
10.2.   Power Generation/Cogeneration ......................... 576
10.2.1. High Power Level (lOOkW to MWs) ....................... 576
        10.2.1.1. Fuel-Cell Energy MCFC and MCFC/GT Hybrid
                  Power Plants ................................ 576
        10.2.1.2. Ansaldo Ricerche (ARI, Italy), 100 kW MCFC
                  Power Plant ................................. 580
        10.2.1.3. IHI (Japan) 100-kW MCFC Power Plants ........ 582
        10.2.1.4. UTC-Fuel Cells 200-kW PAFC, PC 25, Power
                  Plant ....................................... 582
        10.2.1.5. Siemens-Westinghouse Tubular SOFC Power
                  Plant (100-500 kW) .......................... 586
        10.2.1.6. Ballard 250-kW PEMFC Power Plant ............ 588
10.2.2. Low to Medium Power Generation (5 to 100 kW) .......... 588
        10.2.2.1. Plug Power 5-kW Power Plant ................. 588
        10.2.2.2. General Electric 5-kW Planar SOFC Power
                  Plant ....................................... 589
10.3.   Transportation ........................................ 590
10.3.1. Daimler-Chrysler PEMFC Powered Vehicles ............... 590
10.3.2. General Motors/Opel PEMFC Powered Vehicles ............ 591
10.3.3. Toyota PEMFC/NiMHx Powered Vehicle .................... 592
10.3.4. Honda PEMFC/Carbon Ultracapacitor Hybrid Vehicle ...... 594
10.3.5. Paul Scherrer Institute/Volkswagen AG/
        FEV Motorrentechnick GMB-1/Montena Components PEMFC
        Ultracapacitor Powered Automobile ..................... 594
10.3.6. Siemens PEMFC Propulsion System for Submarines ........ 597
10.4.   Portable Power ........................................ 597
10.4.1. NASA's Space Shuttle AFC Power Plant .................. 597
10.4.2. Power Sources for Commercial and Aerospace
        Applications: Low Power Level (100 W to 5 kW) ......... 598
10.4.3. Power Sources for Commercial Applications: Ultra-Low
        Power Level (1 to 100W) ............................... 598
10.5.   Economic Perspectives and Technical Challenges ........ 600
10.5.1. Rationale for this Section and a Look-back at
        the Past 50 years ..................................... 600
10.5.2. Largest Impact for Fuel Cells Entering the Energy
        Sector: Energy Conservation and Significantly
        Lowering Environmental Pollution ...................... 602
10.5.3. Finding Niche Markets for the Entry of Fuel Cells in
        the Energy Sector ..................................... 602
10.5.4. Cost Target for the Three-Main Applications and
        the Need for a Realistic Cost-Benefit Analysis ........ 602
10.5.5. Importance of Cost Reduction of Component Materials
        and Fabrication ....................................... 603
10.5.6. Performance Degradation and Operational Costs ......... 604
10.5.7. Technical and Economical Challenges ................... 604
Suggested Reading ............................................. 605

Chapter 11
COMPETING TECHNOLOGIES
11.1    Scope of Chapter ...................................... 607
11.1.1. Technology Comparison ................................. 607
11.1.2. Power Generation and Transportation ................... 607
11.1.3. Environmental Considerations .......................... 608
11.1.4. Portable Power Applications ........................... 608
11.2.   Power Generation and Cogeneration ..................... 609
11.2.1. Electricity Generation in a Global Energy Context ..... 609
11.2.2. Fossil-Fuel Based Thermal Power Plants ................ 609
        11.2.2.1. Operating Principles: Steam Cycle ........... 609
        11.2.2.2. Operating Principles: Gas Turbine Cycle ..... 611
        11.2.2.3. Thermal-Power-Plant Efficiency .............. 611
        11.2.2.4. Combustion and Environmental Concerns ....... 612
11.2.3. Coal-Based Steam Power Cycles ......................... 614
        11.2.3.1. Operating Principles: System
                  Configurations .............................. 614
        11.2.3.2. Thermal Efficiency Considerations ........... 614
        11.2.3.3. Emissions and Control ....................... 614
        11.2.3.4. System Considerations ....................... 615
11.2.4. Natural-Gas Turbine Power Systems ..................... 615
        11.2.4.1. General Comments on Gas Turbine Systems ..... 615
        11.2.4.2. System Configurations for Turbine Systems ... 615
        11.2.4.3. Efficiency Considerations ................... 616
        11.2.4.4. Emissions and Control ....................... 617
        11.2.4.5. Economic and System Considerations .......... 617
11.2.5. Nuclear Based Thermal Power Plants .................... 617
        11.2.5.1. General Comments on Nuclear-Power Systems ... 617
        11.2.5.2. Operating Principles and System
                  Configurations .............................. 618
        11.2.5.3. Efficiency Considerations ................... 619
        11.2.5.4. Environmental and Public Concerns ........... 619
11.2.6. Hydroelectric Power Plants ............................ 620
        11.2.6.1. Operating Principles ........................ 620
        11.2.6.2. Performance Characteristics ................. 621
        11.2.6.3. System Aspects and Economics ................ 622
        11.2.6.4. Environmental Benefits and Concerns ......... 622
11.2.7. Photovoltaic Power Generation ......................... 623
        11.2.7.1. Background and Operating Principles ......... 623
        11.2.7.2. Performance Characteristics ................. 623
        11.2.7.3. Systems Aspects and Economics ............... 624
        11.2.7.4. Environmental Benefits and Concerns ......... 625
11.2.8. Solar-Thermal Systems ................................. 625
        11.2.8.1. Background and Operating Principles ......... 625
        11.2.8.2. Performance Characteristics ................. 627
        11.2.8.3. Systems Aspects, Applications, and
                  Economics ................................... 627
        11.2.8.4. Environmental Benefits and Concerns ......... 627
11.2.9. Wind Energy Systems ................................... 628
        11.2.9.1. Background and Operating Principles ......... 628
        11.2.9.2. Performance Characteristics ................. 629
        11.2.9.3. Systems Aspects and Economics ............... 630
        11.2.9.4. Environmental Benefits and Concerns ......... 630
11.2.10. Geothermal Energy Systems ............................ 631
        11.2.10.1. Background and Operating Principles ........ 631
        11.2.10.2. Performance characteristics and System
                   Configurations ............................. 631
        11.2.10.3. Systems Aspects and Economics .............. 632
        11.2.10.4. Environment Emissions Concerns ............. 632
11.2.11. Ocean Energy Systems ................................. 632
        11.2.11.1. General Comments on Types of Systems ....... 632
        11.2.11.2. Tidal-Barrage Energy Systems ............... 633
        11.2.11.3. Wave Energy Systems ........................ 633
        11.2.11.4. Tidal Marine Currents ...................... 633
        11.2.11.5. Ocean Therma- Energy Converters (OTEC) ..... 633
11.3.   Small-Scale Remote and Distributed Power .............. 634
11.3.1. Background ............................................ 634
11.3.2. Small-Scale Generation Technologies ................... 634
        11.3.2.1. General Comments ............................ 634
        11.3.2.2. Reciprocating Engines ....................... 635
        11.3.2.3. Microturbines ............................... 635
        11.3.2.4. Renewable Sources ........................... 635
        11.3.2.5. Nuclear Sources ............................. 636
11.4.   Transportation-Automotive Power Plants ................ 636
11.4.1. Perspectives .......................................... 636
11.4.2. Internal-Combusion Engine ............................. 637
        11.4.2.1. Design Types ................................ 637
        11.4.2.2. Principles of Operation ..................... 637
        11.4.2.3. Work, Power, Efficiency, and Fuel Economy ... 638
11.4.3. Internal-Combustion Engines: Spark-Ignition Engines ... 639
        11.4.3.1. Design and Principles of Operation .......... 639
        11.4.3.2. Thermal Efficiency and Fuel Efficiency ...... 639
        11.4.3.3. Environmental Impacts: Emissions ............ 640
        11.4.3.4. Typical Power Levels for Specific
                  Applications ................................ 640
11.4.4. Internal Combustion Engines: Compression Ignition
        (Diesel) .............................................. 642
        11.4.4.1. Applications and Principles of Operation .... 642
        11.4.4.2. Thermal Efficiency and Fuel Efficiency ...... 642
        11.4.4.3. Environmental Impacts: Emissions ............ 643
        11.4.4.4. Power Levels and Performance Factors ........ 643
11.4.5. Electric-Vehicle Power Plants ......................... 643
        11.4.5.1. General Comments ............................ 643
        11.4.5.2. Principles of Operation ..................... 644
        11.4.5.3. System Issues ............................... 644
        11.4.5.4. Environmental Benefits ...................... 645
11.4.6. Hybrid Powered Vehicles ............................... 645
        11.4.6.1. Unique Characteristics and Benefits ......... 645
        11.4.6.2. Fundamentals of System Operation ............ 645
        11.4.6.3. Thermal Efficiency and Fuel Efficiencies .... 645
        11.4.6.4. Emissions and Control ....................... 648
11.5.   Portable Power ........................................ 648
11.5.1. Background ............................................ 648
11.5.2. Batteries ............................................. 648
11.5.3. Environmental Aspects ................................. 649
11.5.4.	Other Energy Storage Devices .......................... 649
        11.5.4.1. Flywheels ................................... 649
        11.5.4.2. Compressed Air .............................. 649
        11.5.4.3. Ultracapacitors ............................. 650
11.6.   Techno-Economic Assessments: Fuel Cells and
        Competing Technologies ................................ 650
11.6.1. General Comments ...................................... 650
11.6.2. Power Generation/Cogeneration ......................... 651
11.6.3. Small-Scale Remote and Distributed Power .............. 654
11.6.4. Transportation ........................................ 655
11.6.5. Portable Power ........................................ 657
11.6.6. Conclusions ........................................... 658
Suggested Reading ............................................. 659
Problems ...................................................... 661

Chapter 12
CONCLUSIONS AND PROGNOSIS ..................................... 663

INDEX ......................................................... 671


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:24 2019. Размер: 51,179 bytes.
Посещение N 1726 c 26.04.2010