Quantum information processing (Weinheim, 2005). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаQuantum information processing / ed. by Beth T., Leuchs G. - 2nd rev. and enlarged ed. - Weinheim: Wiley-VCH, 2005. - 449 p. - ISBN 3527405410
 

Оглавление / Contents
 
Preface ........................................................ XV

List of Contributors .......................................... XIX

1.  Algorithms for Quantum Systems — Quantum Algorithms
       (Th. Beth, M. Grassl, D. Janzing, M. Rotteler, R.
        Wocjan, and R. Zeier) ................................... 1
    1.1.  Introduction .......................................... 1
    1.2.  Fast Quantum Signal Transforms......................... 1
    1.3.  Quantum Error-correcting Codes ........................ 3
    1.4.  Efficient Decomposition of Quantum Operations into
          Given One-parameter Groups ............................ 5
    1.5.  Simulation of Hamiltonians ............................ 8
    References ................................................. 10

2.  Quantum Information Processing and Error Correction with
    Jump Codes
       (G. Alber, M. Mussinger, and A. Delgado) ................ 14
    2.1.  Introduction  14
    2.2.  Invertible Quantum Operations and Error Correction ... 15
    2.3.  Quantum Error Correction by Jump Codes ............... 17
          2.3.1.  Spontaneous Decay and Quantum Trajectories ... 17
          2.3.2.  Jump Codes ................................... 19
    2.4.  Universal Quantum Gates in Code Spaces ............... 21
          2.4.1.  Universal Sets of Quantum Gates for
                  Qudit-Systems ................................ 21
          2.4.2.  Universal One-Qutrit Gates ................... 22
          2.4.3.  A Universal Entanglement Gate ................ 23
    2.5.  Summary and Outlook .................................. 25
    References ................................................. 26

3.  Computational Model for the One-Way Quantum Computer:
    Concepts and Summary 
       (R. Raussendorf and H. J. Briegel) ...................... 28
    3.1.  Introduction ......................................... 28
    3.2.  The QCC as a Universal Simulator of Quantum Logic
          Networks ............................................. 30
    3.3.  Non-Network Character of the QCC ..................... 35
    3.4.  Computational Model .................................. 36
    3.5.  Conclusion ........................................... 42
    References ................................................. 42

4.  Quantum Correlations as Basic Resource for Quantum Key
    Distribution
       (M. Curty, O. Gühne, M. Lewenstein, and
        N. Lütkenhaus) ......................................... 44
    4.1.  Introduction ......................................... 44
    4.2.  Background of Classical Information Theoretic
          Security ............................................. 45
    4.3.  Link Between Classical and Quantum ................... 46
    4.4.  Searching for Effective Entanglement ................. 49
    4.5.  Verification Sets .................................... 51
          4.5.1.  6-state Protocol ............................. 51
          4.5.2.  4-state Protocol ............................. 51
          4.5.3.  2-state Protocol ............................. 52
    4.6.  Examples for Evaluation .............................. 53
    4.7.  Realistic Experiments ................................ 54
    4.8.  Conclusions .......................................... 55
    References ................................................. 55

5.  Increasing the Size of NMR Quantum Computers
       (S.J. Glaser, R. Marx, T. Reiss, T. Schulte-
       Herbrüiggen, N. Khaneja, J.M. Myers, and A.F. Fahmy) .... 58
    5.1.  Introduction ......................................... 58
    5.2.  Suitable Molecules ................................... 59
    5.3.  Scaling Problem for Experiments Based on Pseudo-
          pure States .......................................... 62
    5.4.  Approaching Pure States .............................. 62
    5.5.  Scalable NMR Quantum Computing Based on the Thermal
          Density Operator ..................................... 63
    5.6.  Time-optimal Implementation of Quantum Gates ......... 64
    5.7.  Conclusion ........................................... 67
    References ................................................. 68

6.  On Lossless Quantum Data Compression and Quantum Variable
    -length Codes
       (R. Ahlswede and N. Cai) ................................ 70
    6.1.  Introduction ......................................... 70
    6.2.  Codes, Lengths, Kraft Inequality and von Neumann
          Entropy Bound ........................................ 71
          6.2.1.  The Codes .................................... 71
          6.2.2.  Length Observable and Average Length of
                  Codewords .................................... 72
          6.2.3.  Kraft Inequality and von Neumann Entropy
                  Bound ........................................ 72
          6.2.4.  Base Length .................................. 73
    6.3.  Construct Long Codes from Variable-length Codes ...... 73
    6.4.  Lossless Quantum Data Compression, if the Decoder
          is Informed about the Base Lengths ................... 74
    6.5.  Code Analysis Based on the Base Length ............... 75
    6.6.  Lossless Quantum Data Compression with a Classical
          Helper ............................................... 76
    6.7.  Lossless Quantum Data Compression for Mixed State
          Sources .............................................. 79
    6.8.  A Result on Tradeoff between Quantum and Classical
          Resources in Lossy Quantum Data Compression .......... 80
    References ................................................. 81

7.  Entanglement Properties of Composite Quantum Systems
       (K. Eckert, O. Gühne, F. Hulpke, P. Hyllus, J.
        Korbicz, J. Mompart, D. Bruß, M. Lewenstein, and
        A. Sanpera) ............................................ 83
    7.1.  Introduction ......................................... 83
    7.2.  Separability of Composite Quantum Systems ............ 84
          7.2.1.  The Separability Problem ..................... 85
          7.2.2.  Results on The Separability Problem .......... 86
    7.3.  The Distillability Problem ........................... 88
          7.3.1.  Results on the Distillability Problem ........ 89
    7.4.  Witness Operators for the Detection of
          Entanglement ......................................... 90
          7.4.1.  Definition and Geometrical Interpretation
                  of Witness Operators ......................... 90
          7.4.2.  Results on Witness Operators ................. 92
    7.5.  Quantum Correlations in Systems of Fermionic and
          Bosonic States ....................................... 94
          7.5.1.  What is Different with Indistinguishable
                  Particles? ................................... 94
          7.5.2.  Results on Quantum Correlations for
                  Indistinguishable Particles .................. 95
          7.5.3.  Implementation of an Entangling Gate with
                  Bosons ....................................... 97
    7.6.  Summary .............................................. 97
    References ................................................. 97

8.  Non-Classical Gaussian States in Noisy Environments
       (S. Scheel and D.-G. Welsch) ........................... 100
    8.1.  Introduction ........................................ 100
    8.2.  Gaussian States and Gaussian Operations ............. 100
          8.2.1.  Classicality ................................ 102
          8.2.2.  CP Maps and Partial Measurements ............ 102
          8.2.3.  Separability and Entanglement ............... 103
    8.3.  Entanglement Degradation ............................ 104
    8.4.  Quantum Teleportation in Noisy Environments ......... 106
          8.4.1.  Imperfect Teleportation ..................... 107
          8.4.2.  Teleportation Fidelity ...................... 108
          8.4.3.  Choice of the Coherent Displacement ......... 110
    References ................................................ 111

9.  Quantum Estimation with Finite Resources
       (T.C. Bschorr, D.G. Fischer, H. Mack, W.P. Schleich,
        and M. Freyberger) .................................... 113
    9.1.  Introduction ........................................ 113
    9.2.  Quantum Devices and Channels ........................ 114
    9.3.  Estimating Quantum Channels ......................... 115
    9.4.  Entanglement and Estimation ......................... 115
          9.4.1.  Estimation using Single Qubits .............. 116
          9.4.2.  Estimation using Entangled States ........... 118
    9.5.  Generalized Estimation Schemes ...................... 120
          9.5.1.  Estimation with Two Channels ................ 120
          9.5.2.  What is the Optimal Reference Channel? ...... 121
          9.5.3.  Estimation with Werner States ............... 122
    9.6.  Outlook ............................................. 123
    References ................................................ 124

10. Size Scaling of Decoherence Rates
       (C.S. Maierle and D. Suter)............................. 125
    10.1. Introduction ........................................ 125
    10.2. Decoherence Models .................................. 126
    10.3. Collective and Independent Decoherence .............. 127
    10.4. Average Decoherence Rate as a Measure of
          Decoherence ......................................... 128
    10.5. Decoherence Rate Scaling due to Partially
          Correlated Fields ................................... 130
    10.6. Conclusion .......................................... 134
    References ................................................ 134

11. Reduced Collective Description of Spin-Ensembles
       (M. Michel, H. Schmidt, F. Tonner, and G. Mahler) ...... 135
    11.1. Introduction ........................................ 135
    11.2. Operator Representations ............................ 135
    11.3. Hamilton Models ..................................... 138
          11.3.1. Symmetry-constrained Networks ............... 138
          11.3.2. Topology-constrained Networks ............... 139
    11.4. State Models ........................................ 140
          11.4.1. Totally Permutation-symmetric Subspace ...... 140
          11.4.2. Collective 1-particle Excitations ........... 140
          11.4.3. 1-parameter Families of Non-pure States ..... 141
          11.4.4. Families of Separable States: "Modules" ..... 141
    11.5. Ensembles ........................................... 141
          11.5.1. Trajectories and Ergodicity ................. 142
          11.5.2. Leakage and Storage Capacity ................ 144
          11.5.3. Mixing Strategies ........................... 146
          11.5.4. State Construction and Separability ......... 147
    11.6. Summary and Outlook ................................. 147
    References ................................................ 148

12. Quantum Information Processing with Defects
       (F. Jelezko and J. Wrachtrup) .......................... 150
    12.1. Introduction ........................................ 150
    12.2. Properties of Nitrogen-vacancy Centers in Diamond ... 150
    12.3. Readout of Spin State via Site-selective
          Excitation .......................................... 152
    12.4. Magnetic Resonance on a Single Spin at Room
          Temperature ......................................... 155
    12.5. Magnetic Resonance on a Single 13C Nuclear Spin ..... 156
    12.6. Two-qubit Gate with Electron Spin and 13C Nuclear
          Spin of Single NV Defect ............................ 158
    12.7. Outlook: Towards Scalable NV Based Quantum
          Processor ........................................... 160
    References ................................................ 160

13. Quantum Dynamics of Vortices and Vortex Qubits
       (A. Wallraff, A. Kemp, and A.V. Ustinov) ............... 162
    13.1. Introduction ........................................ 162
    13.2. Macroscopic Quantum Effects with Single Vortices .... 163
          13.2.1. Quantum Tunneling ........................... 163
          13.2.2. Energy Level Quantization ................... 165
    13.3. Vortex-Antivortex Pairs ............................. 167
          13.3.1. Thermal and Quantum Dissociation ............ 167
          13.3.2. Energy Levels of a Bound Vortex-Antivortex
                  Pair ........................................ 171
    13.4. The Josephson Vortex Qubit .......................... 173
          13.4.1. Principle of the Vortex Qubit ............... 174
          13.4.2. Model ....................................... 175
          13.4.3. Perturbative Calculation of Vortex
                  Potential ................................... 177
          13.4.4. Quantum Mechanics of a Vortex in a Double
                  Well ........................................ 179
          13.4.5. Depinning Current and Qubit Readout ......... 180
    13.5. Conclusions ......................................... 182
    References ................................................ 183

14. Decoherence in Resonantly Driven Bistable Systems
       (S. Kohler and P. Hänggi) .............................. 186
    14.1. Introduction ........................................ 186
    14.2. The Model and its Symmetries ........................ 186
    14.3. Coherent Tunneling .................................. 188
    14.4. Dissipative Tunneling ............................... 192
    14.5. Conclusions ......................................... 196
    References ................................................ 197

15. Entanglement and Decoherence in Cavity QED with a
    Trapped Ion
       (W. Vogel and Ch. DiFidio) ............................. 198
    15.1. Introduction ........................................ 198
    15.2. Decoherence Effects ................................. 199
    15.3. Greenberger-Horne-Zeilinger State ................... 201
    15.4. Photon-number Control ............................... 203
    15.5. Entanglement of Separated Atoms ..................... 205
    15.6. Summary ............................................. 207
    References ................................................ 207

16. Quantum Information Processing with Ions
    Deterministically Coupled to an Optical Cavity
       (M. Keller, B. Lange, K. Hayasaka, W. Lange, and
        H. Walther) ........................................... 209
    16.1 Introduction ......................................... 209
    16.2 Deterministic Coupling of Ions and Cavity Field ...... 210
    16.3 Single-ion Mapping of Cavity-Modes ................... 212
    16.4 Atom-Photon Interface ................................ 215
    16.5 Single-Photon Source ................................. 217
    16.6 Cavity-mediated Two-Ion Coupling ..................... 219
    References ................................................ 221

17. Strongly Coupled Atom-Cavity Systems
       (A. Kuhn, M. Hennrich, and G. Rempe) ................... 223
    17.1. Introduction ........................................ 223
    17.2. Atoms, Cavities and Light ........................... 223
          17.2.1. Field Quantization in a Fabry-Perot
                  Cavity ...................................... 223
          17.2.2. Two-Level Atom .............................. 224
          17.2.3. Three-Level Atom ............................ 225
          17.2.4. Adiabatic Passage ........................... 227
    17.3. Single-Photon Sources ............................... 228
          17.3.1 Vacuum-Stimulated Raman Scattering ........... 229
          17.3.2 Deterministic Single-Photon Sequences ........ 230
    17.4. Summary and Outlook ................................. 233
    References ................................................ 233

18. A Relaxation-free Verification of the Quantum Zeno
    Paradox on an Individual Atom
       (Ch. Balzer, Th. Hannemann, D. Reiß, Ch. Wunderlich,
        W. Neuhauser, and P.E. Toschek) ....................... 237
    18.1. Introduction ........................................ 237
    18.2. The Hardware and Basic Procedure .................... 238
    18.3. First Scheme: Statistics of the Sequences of
          Equal Results ....................................... 241
    18.4. Second Scheme: Driving the Ion by Fractionated
          π-Pulses ............................................ 243
    18.5. Conclusions ......................................... 246
    18.6. Survey of Related Work .............................. 247
    References ................................................ 249

19. Spin Resonance with Trapped Ions: Experiments and New
    Concepts
       (K. Abich, Ch. Balzer, T. Hannemann, F. Mintert,
        W. Neuhauser, D. Reiß, R E. Toschek, and
        Ch. Wunderlich) ....................................... 251
    19.1. Introduction ........................................ 251
    19.2. Self-learning Estimation of Quantum States .......... 252
    19.3. Experimental Realization of Quantum Channels ........ 254
    19.4. New Concepts for QIP with Trapped Ions .............. 256
          19.4.1. Spin Resonance with Trapped Ions ............ 257
          19.4.2. Simultaneous Cooling of Axial Vibrational
                  Modes ....................................... 260
    19.5. Raman Cooling of two Trapped Ions ................... 261
    References ................................................ 263

20. Controlled Single Neutral Atoms as Qubits
       (V. Gomer, W. Alt, S. Kuhr, D. Schrader, and
        D. Meschede) .......................................... 265
    20.1. Introduction ........................................ 265
    20.2. Cavity QED for QIP .................................. 265
    20.3. Single Atom Controlled Manipulation ................. 266
    20.4. How to Prepare Exactly 2 Atoms in a Dipole Trap? .... 267
    20.5. Optical Dipole Trap ................................. 267
    20.6. Relaxation and Decoherence .......................... 268
    20.7. Qubit Conveyor Belt ................................. 269
    20.8. Outlook ............................................. 270
    References ................................................ 270

21. Towards Quantum Logic with Cold Atoms in a C02 Laser
    Optical Lattice
       (G. Cennini, G. Ritt, C. Geckeler, R. Scheunemann,
        and M. Weitz) ......................................... 275
    21.1. Introduction ........................................ 275
    21.2. Entanglement and Beyond ............................. 276
    21.3. Quantum Logic and Far-detuned Optical Lattices ...... 277
    21.4. Resolving and Addressing Cold Atoms in Single
          Lattice Sites ....................................... 279
    21.5. Recent Work ......................................... 282
    References ................................................ 284

22. Quantum Information Processing with Atoms in Optical
    Micro-Structures
       (R. Dumke, M. Volk, T. Müther, F.B.J. Buchkremer,
        W. Ertmer, and G. Birkl) .............................. 287
    22.1. Introduction  287
    22.2. Microoptical Elements for Quantum Information
          Processing .......................................... 288
    22.3. Experimental Setup  289
    22.4. Scalable Qubit Registers Based on Arrays of Dipole
          Traps ............................................... 290
    22.5. Initialization, Manipulation and Readout ............ 291
    22.6. Variation of Trap Separation ........................ 292
    22.7. Implementation of Qubit Gates ....................... 293
    References ................................................ 296

23. Quantum Information Processing with Neutral Atoms on
    Atom Chips
       (R. Krüger, A. Haase, M. Andersson, and J.
        Schmiedmayer) ......................................... 298
    23.1. Introduction ........................................ 298
    23.2. The Atom Chip ....................................... 298
            23.2.1. Combined Magneto-Electric Traps ........... 299
            23.2.2. RF-induced Adiabatic Potentials for
                    Manipulating Atoms ........................ 300
            23.2.3. Imperfections in the Atom Chip: Disorder
                    Potentials ................................ 301
    23.3. The Qubit ........................................... 302
    23.4. Entangling Qubits ................................... 303
          23.4.1. Quantum Gate via Cold Controlled
                  Collisions .................................. 303
          23.4.2. Motional Qubit Gates with Controlled
                  Collisions .................................. 305
    23.5. Input/Output ........................................ 305
          23.5.1. Qubit Detection ............................. 305
          23.5.2. Quantum Input/Output ........................ 307
    23.6. Noise and Decoherence ............................... 307
    23.7. Summary and Conclusion .............................. 308
    References ................................................ 309

24. Quantum Gates and Algorithms Operating on Molecular
    Vibrations
       (U. Troppmann, C.M. Tesch, and R. de Vivie-Riedle) ..... 312
    24.1. Introduction ........................................ 312
    24.2. Qubit States Encoded in Molecular Vibrations ........ 313
    24.3. Optimal Control Theory for Molecular Dynamics ....... 313
          24.3.1. Local Quantum Gates ......................... 315
    24.4. Multi-target OCT for Global Quantum Gates ........... 317
          24.4.1. Global Quantum Gates for Molecular
                  Vibrational Qubits .......................... 317
    24.5. Basis Set Independence and Quantum Algorithms ....... 318
    24.6. Towards More Complex Molecular Systems .............. 321
    24.7. Outlook ............................................. 324
    References ................................................ 325

25. Fabrication and Measurement of Aluminum and Niobium
    Based Single-Electron Transistors and Charge Qubits
       (W. Krech, D. Born, M. Mihalik, and M. Grajcar) ........ 327
    25.1. Introduction ........................................ 327
    25.2. Motivation for this Work ............................ 328
    25.3. Sample Preparation .................................. 329
          25.3.1. Scheme of the Junction Preparation
                  Technique ................................... 329
          25.3.2. Fabrication of Tunnel Devices: SET and
                  Charge Qubit Structures ..................... 330
    25.4. Experimental Results ................................ 331
    25.5. Conclusions ......................................... 333
    References ................................................ 335

26. Quantum Dot Circuits for Quantum Computation
       (R.H. Blick, A.K. Hüttel, A.W. Holleitner,
        L. Pescini, and H. Lorenz) ............................ 338
    26.1. Introduction ........................................ 338
    26.2. Realizing Quantum Bits in Double Quantum Dots ....... 339
    26.3. Controlling the Electron Spin in Single Dots ........ 346
    26.4. Summary ............................................. 351
    References ................................................ 351

27. Manipulation and Control of Individual Photons and
    Distant Atoms via Linear Optical Elements
       (X.-B. Zou and W. Mathis) .............................. 353
    27.1. Introduction ........................................ 353
    27.2. Manipulation and Control of Individual Photons
          via Linear Optical Elements ......................... 354
          27.2.1. Teleportation Implementation of Non-
                  deterministic NLS Gate and Single-mode
                  Photon Filter ............................... 354
          27.2.2. Implementation of Non-deterministic NLS
                  Gate via Parametric Amplifiers .............. 359
          27.2.3. Phase Measurement of Light and Generation
                  of Superposition of Fock States ............. 360
          27.2.4. Joint Measurement of Photon Number Sum and
                  Phase Difference Operators on a Two-mode
                  Field ....................................... 365
          27.2.5. Remark ...................................... 370
    27.3. Quantum Entanglement Between Distant Atoms Trapped
          in Different Optical Cavities ....................... 370
          27.3.1. Generation of W States, GHZ States and
                  Cluster States Based on Single-photon
                  Detectors ................................... 370
          27.3.2. Generation of W States and GHZ States
                  Based on Four-photon Coincidence
                  Detection ................................... 376
    27.4. Conclusion .......................................... 379
    References ................................................ 379

28. Conditional Linear Optical Networks
       (S. Scheel) ............................................ 382
    28.1. Introduction ........................................ 382
    28.2. Measurement-induced Nonlinearities .................. 383
          28.2.1. Beam Splitters and Networks ................. 384
          28.2.2. Post-processing of Single-Photon Sources
                  and Number-Resolving Detectors .............. 385
    28.3. Probability of Success and Permanents ............... 386
    28.4. Upper Bounds on Success Probabilities ............... 388
    28.5. Extension Using Weak Nonlinearities ................. 390
    References ................................................ 391

29. Multiphoton Entanglement
       (M. Bourennane, M. Eibl, S. Gaertner, N. Kiesel, Ch.
        Kurtsiefer, M. ßukowski, and H. Weinfurter) ........... 393
    29.1. Introduction ........................................ 393
    29.2. Entangled Multiphoton State Preparation ............. 394
    29.3. Experiment .......................................... 395
    29.4. Quantum Correlations ................................ 396
    29.5. Bell Inequality ..................................... 398
    29.6. Genuine Four-photon Entanglement .................... 400
    29.7. Entanglement Persistence ............................ 400
    29.8. Conclusions ......................................... 401
    References ................................................ 403

30. Quantum Polarization for Continuous Variable Information
    Processing
       (N. Korolkova) ......................................... 405
    30.1. Introduction ........................................ 405
    30.2. Nonseparability and Squeezing ....................... 406
          30.2.1. Polarization Squeezing ...................... 406
          30.2.2. Continuous Variable Polarization
                  Entanglement ................................ 407
    30.3. Applications ........................................ 410
    30.4. Stokes Operators Questioned: Degree of
          Polarization in Quantum Optics ...................... 413
    References ................................................ 416

31. A Quantum Optical XOR Gate
       (H. Becker, K. Schmid, W. Dultz, W. Martienssen, and
        H. Roskos) ............................................ 418
    31.1. Introduction ........................................ 418
    31.2. Double Bump Photons ................................. 418
    31.3. The XOR Gate ........................................ 420
    31.4. Quad Bump Photons ................................... 423
    31.5. Outlook ............................................. 424
    References ................................................ 424

32. Quantum Fiber Solitons — Generation, Entanglement,
    and Detection
       (G. Leuchs, N. Kowlkova, O. Glöckl, St. Lorenz,
        J. Heersink,   Ch. Silberhorn, Ch. Marquardt,
        and U.L. Andersen) .................................... 425
    32.1. Introduction ........................................ 425
    32.2. Quantum Correlations and Entanglement ............... 426
    32.3. Multimode Quantum Correlations ...................... 428
    32.4. Generation of Bright Entangled Beams ................ 431
    32.5. Detection of Entanglement of Bright Beams ........... 432
          32.5.1. Sub-shot-noise Phase Quadrature
                  Measurements on Intense Beams ............... 432
          32.5.2. Direct Experimental Test of Non-
                  Separability ................................ 434
    32.6. Entanglement Swapping ............................... 435
    32.7. Polarization Variables .............................. 437
    References ................................................ 439

Index ......................................................... 443


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:20 2019. Размер: 33,693 bytes.
Посещение N 1527 c 26.04.2010