1. Measurement and reproduction of a complex voltage ratio
with the application of digital signal processing algorithms
R. Rybski and J. Kaczmarek ................................ 1
1.1. Introduction ............................................... 1
1.2. Digital sine-wave sources for the reproduction of the complex
voltage ratio .............................................. 2
1.2.1. Complex voltage ratio ............................... 2
1.2.2. Digital sine-wave sources ........................... 3
1.2.2.1. Sinusoidal voltage generation based on direct
digital synthesis techniques ............... 3
1.2.2.2. Accuracy of digital sources of the sinusoidal
voltage .................................... 8
1.3. Complex voltage measurement using the discrete Fourier
transform ................................................. 11
1.3.1. Sampling method for the measurement of a complex
voltage ratio ..................................... 11
1.3.2. Error sources of complex voltage ratio measurement
by the sampling method ............................ 13
1.4. Application examples of circuits for the measurement and
reproduction of the complex voltage ratio ................. 17
1.4.1. Impedance bridge with two voltage sources .......... 17
1.4.2. Virtual bridge ..................................... 20
1.4.3. AC power calibrator ................................ 23
1.5. Summary ................................................... 23
References ..................................................... 25
2. Estimation of correlation functions on the basis of digital
signal representation
J. Lal-Jadziak .............................................. 29
2.1. Introduction .............................................. 29
2.2. Statistical theory of quantization for moments of
signals ................................................... 30
2.3. Estimation errors due to A/D conversion of signals ........ 34
2.4. Estimation errors caused by the application of A/D conversion
with dither ............................................... 37
2.5. Analysis of variance component coming from quantization with
dither .................................................... 41
2.6. Experimental research results and their assessment ........ 43
2.7. Conclusions ............................................... 45
References ..................................................... 46
3. Compensation of conditioning system imperfections in measuring
systems
L. Furmankiewicz, M. Koziol and R. Klosiuski ................ 49
3.1. Introduction .............................................. 49
3.2. Frequency error correction in power measurements .......... 50
3.2.1. Frequency linear model of input circuits ........... 50
3.2.2. Active power measurement errors .................... 52
3.2.3. Error correction in power measurements ............. 53
3.2.4. Transformer error correction of input circuits ..... 54
3.2.5. Error correction in the industrial transducer ...... 55
3.3. Quasi-inverse correction filters .......................... 57
3.3.1. Optimization problems leading to quasi-inverse
filters ............................................ 60
3.3.2. Solutions of optimization problems ................. 60
3.3.3. Transfer function of quasi-inverse filters ......... 61
3.3.4. Frequency response of quasi-inverse filters ........ 62
3.3.5. Approximation and stability functions .............. 63
3.3.6. Signal processing by quasi-inverse filters ......... 63
3.3.7. Simulation example ................................. 64
3.4. Reconstruction of non-linear deformed periodic signals using
the inverse circular parametric operators method .......... 65
3.4.1. Non-linear system approximation by a sequence of
linear time-varying systems ........................ 65
3.4.2. Description of an LPTV system using a circular
parametric operator ................................ 66
3.4.3. Measurement-based determination of circular parametric
operators for LPTV and non-linear systems .......... 67
3.4.4. Idea of the reconstruction of the non-linear
deformed periodic signal method .................... 70
3.4.5. Experiments ........................................ 70
3.5. Conclusions ............................................... 73
References ..................................................... 74
4. Voltage and current calibrators
A. Olencki, J. Szmytkiewicz and K. Urbanski ................. 77
4.1. Introduction .............................................. 77
4.2. Static model of the voltage calibrator .................... 78
4.2.1. Definitions of the calibrator ...................... 78
4.2.2. Model of the multifunction (DC and AC voltage and
current) calibrator ................................ 79
4.2.3. Open structure of the calibrator.................... 79
4.2.4. Closed loop structure of the calibrator and error
analysis ........................................... 80
4.3. Dynamic properties of calibrators using the closed loop
structure ................................................. 81
4.4. Digital to analogue converters used in calibrators ........ 82
4.4.1. Basic requirements ................................. 82
4.4.2. PWM DACs ........................................... 83
4.4.3. DACs with inductive voltage dividers ............... 84
4.5. Increasing the accuracy of calibrators .................... 85
4.6. Multiple output calibrators ............................... 87
4.7. Calibrator as a test system ............................... 90
4.8. Conclusions ............................................... 92
References ..................................................... 92
5. Assigning time parameters of distributed measurement-control
systems
E. Michta and A. Markowski .................................. 95
5.1. Introduction .............................................. 95
5.2. Reasons of delays in DMCSs ................................ 96
5.3. Time parameters assigning approaches ...................... 97
5.4. DMCS communication model .................................. 98
5.4.1. Communication model ................................ 98
5.4.2. System task model ................................. 100
5.5. Scheduling theory in DMCS analysis ....................... 100
5.5.1. Task priority assignment schemes .................. 101
5.5.2. Pre-emptive and non-pre-emptive systems ........... 102
5.5.3. Offline schedulability analysis ................... 102
5.5.4. Response time tests ............................... 103
5.6. DMCS simulation model .................................... 104
5.6.1. DMCS model structure .............................. 104
5.6.2. Simulation model based on the activity inspection
method ............................................ 105
5.6.3. Results of simulation ............................. 106
5.7. Verification of a simulation model ....................... 108
5.7.1. Analytical methods ................................ 108
5.7.2. Experimental approach ............................. 111
5.8. Simulation of DMCS ....................................... 112
5.8.1. Influence of the DMCS and node structure on time
system parameters ................................. 113
5.8.2. Parameterization of the DMCS system model ......... 113
5.9. Summary .................................................. 117
References .................................................... 118
6. Sensor network design for identification of distributed
parameter systems
D. Ucinski, M. Patan and B. Kuczewski ...................... 121
6.1. Introduction ............................................. 121
6.1.1. Inverse problems for distributed parameter
systems ........................................... 121
6.1.2. Sensor location for parameter estimation .......... 122
6.1.3. Previous work on optimal sensor location .......... 124
6.1.4. Our results ....................................... 126
6.1.5. Notation .......................................... 127
6.2. Sensor location problem in question ...................... 128
6.3. Exact solution by branch-and-bound ....................... 131
6.3.1. Outline ........................................... 131
6.3.2. Branching rule .................................... 133
6.3.3. Solving the relaxed problem via simplicial
decomposition ..................................... 134
6.4. Approximate solution via continuous relaxation ........... 140
6.4.1. Conversion to the problem of finding optimal sensor
densities ......................................... 140
6.4.2. Optimality conditions ............................. 141
6.4.3. Exchange algorithm ................................ 143
6.5. Computational results .................................... 144
6.6. Concluding remarks ....................................... 148
References .................................................... 149
7. Using time series approximation methods in the modelling of
industrial objects and processes
W. Miczulski and R.Szulim .................................. 157
7.1. Introduction ............................................. 157
7.2. Regression models ........................................ 158
7.3. Examples of the usage of regression models ............... 161
7.3.1. Exemplary object and process description .......... 161
7.3.2. Knowledge acquisition from measurement data of complex
technological process ............................. 163
7.3.3. Diagnostics of a standard radio frequency
generator ......................................... 168
7.4. Summary .................................................. 172
References .................................................... 173
8. Analytical methods and artificial neural networks in fault
diagnosis and modelling of non-linear systems
J. Korbicz, M. Witczak, K. Patan, A. Janczak and
M. Mrugalski ............................................... 175
8.1. Introduction ............................................. 175
8.2. Observer-based FDI ....................................... 179
8.2.1. Observers for non-linear Lipschitz systems ........ 180
8.2.2. Extended unknown input observers .................. 182
8.3. Neural networks in FDI schemes ........................... 183
8.3.1. Model-based approaches ............................ 184
8.3.2. Robust model-based approach ....................... 187
8.3.3. Knowledge-based approaches ........................ 191
8.3.4. Data analysis-based approaches .................... 192
8.4. Applications ............................................. 193
8.4.1. Neural network-based modelling of a DC motor ...... 193
8.4.2. Observer-based fault detection of an induction
motor ............................................. 197
8.5. Conclusions .............................................. 200
References .................................................... 200
9. Solving optimization tasks in the construction of diagnostic
systems
A. Obuchowicz, A. Pieczynski, M. Kowal and P. Pretki ....... 205
9.1. Introduction ............................................. 205
9.2. Optimization tasks in FDI system design .................. 206
9.3. Genetic programming approaches to symptom extraction
systems .................................................. 208
9.3.1. Input/output representation of the system
via GP ............................................ 208
9.3.2. Choice of the gain matrix for the robust nonlinear
observer .......................................... 210
9.3.3. GP approach to the state-space representation of the
system ............................................ 211
9.3.4. GP approach to EUIO design ........................ 212
9.4. Optimization tasks in neural models design ............... 215
9.4.1. Optimization aspects of collecting the training set
for an ANN ........................................ 216
9.4.2. Evolutionary learning of ANNs ..................... 217
9.4.3. Optimization of the ANN architecture .............. 219
9.5. Parametric uncertainty of neural networks ................ 220
9.5.1. Adequacy of the linear approximation .............. 221
9.5.2. Evolutionary bands for the expected response ...... 223
9.6. Neuro-fuzzy model structure and parameters tuning ........ 225
9.6.1. Number of partition definitions for network
inputs ............................................ 225
9.6.2. Shape of the fuzzy set membership function ........ 226
9.6.3. Inference and denazification modules .............. 227
9.6.4. Neuro-Fuzzy structure optimization ................ 228
9.6.5. Neuro-fuzzy parameters tuning ..................... 230
9.7. Conclusions .............................................. 234
References .................................................... 234
10. Linear repetitive processes and multidimensional systems
K. Galkowski, W. Paszke and B. Sulikowski ................. 241
10.1. Introduction ............................................ 241
10.2. Models of 2D systems and repetitive processes ........... 244
10.2.1. Discrete LRPs ................................... 244
10.2.2. Differential LRPs ............................... 245
10.3. Stability conditions .................................... 246
10.4. LMI conditions towards stability/stabilization .......... 248
10.4.1. Discrete LRPs ................................... 248
10.4.2. Differential LRPs ............................... 250
10.5. Robustness analysis ..................................... 251
10.6. Guaranteed cost control ................................. 252
10.6.1. Guaranteed cost bound ........................... 253
10.6.2. Guaranteed cost control with a static feedback
controller ...................................... 253
10.7. H2 and H∞ control ....................................... 256
10.7.1. H∞ norm ......................................... 257
10.7.2. Static H∞ controller ............................ 258
10.7.3. H2 norm ......................................... 258
10.7.4. Static H2 controller ............................ 259
10.7.5. Mixed H2/H∞ control problem ..................... 260
10.7.6. H2/H∞ dynamic pass profile controller ........... 261
10.8. Output feedback based controller design ................. 264
10.9. Control for performance ................................. 266
10.10. Conclusions ............................................ 270
References .................................................... 270
11. Quantum information processing with applications in
cryptography
R. Gielerak, E. Kuriata, M. Sawerwain and K. PavAowski .... 273
11.1. Introduction ............................................ 273
11.2. Quantum computation and quantum algorithms .............. 274
11.2.1. Unitary standard quantum machines (UQCM) ........ 276
11.2.2. One Way Quantum Computing Machines (1WQCM) ...... 277
11.2.3. Adiabatic Quantum Computer Calculations
(AQCM) .......................................... 277
11.2.4. Discussion ...................................... 277
11.3. Semantic aspects of quantum algorithms and quantum
programming languages ................................... 278
11.3.1. Quantum labelled transition system .............. 279
11.3.2. Operational description of superdense coding .... 281
11.4. Decoherence processes ................................... 281
11.4.1. Scenario 1 - "Total decoherence" ................ 284
11.4.2. Scenario 2 - "Cluster decoherence" .............. 284
11.5. Quantum cryptography protocols, their security and
technological implementations ........................... 286
11.6. Quantum computer simulator and its applications ......... 291
11.7. Summary and conclusions ................................. 293
References .................................................... 293
12. Selected methods of digital image analysis and identification
for the purposes of computer graphics
S. Nikiel and P. Stec ..................................... 297
12.1. Introduction ............................................ 297
12.2. Complex solution to the lens distortion problem in
photogrammetric reconstruction for digital
archaeology ............................................. 299
12.2.1. Basic concepts .................................. 299
12.2.2. Modeling based on orthogonal projection ......... 299
12.2.3. Image correction ................................ 300
12.2.4. Virtual reconstruction .......................... 303
12.2.5. Conclusions ..................................... 305
12.3. Extraction of multiple objects using multi-label fast
marching ................................................ 306
12.3.1. Initialization .................................. 306
12.3.2. Initial segments propagation .................... 307
12.3.3. Dynamic regularization of the motion field ...... 308
12.3.4. Segment merging and pushing ..................... 309
12.3.5. Stop condition .................................. 312
12.3.6. Experiments ..................................... 312
12.3.7. Conclusions ..................................... 317
References .................................................... 318
13. Low delay three-dimensional wavelet coding of video sequences
A. Poplawski and W. Zajac ................................. 321
13.1. Introduction ............................................ 321
13.2. Temporal filtering in 3D wavelet coders.................. 322
13.2.1. Temporal filters ................................ 324
13.2.1.1. Temporal filtering with the use of Haar
filters....... 324
13.2.1.2. Temporal filtering with the use of 5/3
filters ............................... 324
13.2.2. Temporal filtering delay ........................ 325
13.2.3. Estimation of results ........................... 329
13.3. Reduction of coding delay ............................... 329
13.3.1. Modified filtering schemes ...................... 330
13.3.2. Experimental results ............................ 333
13.4. Conclusions ............................................. 336
References .................................................... 339
14. Safe reconfigurable logic controllers design
M. Adamski, M. Wegrzyn and A. Wegrzyn ..................... 343
14.1. Introduction ............................................ 343
14.1.1. Background ...................................... 344
14.2. Logic controller and the binary control system .......... 346
14.3. Petri net as a specification of a concurrent state
machine ................................................. 347
14.3.1. Petri nets and logic controllers ................ 347
14.3.2. Concurrent state machine ........................ 349
14.3.3. Textual specification of Petri nets ............. 351
14.3.4. Hierarchical interpreted Petri nets ............. 352
14.3.5. Relation of concurrency ......................... 354
14.4. Verification and decomposition methods .................. 357
14.5. Controller synthesis .................................... 361
14.5.1. Concurrent local state assignment ............... 361
14.5.2. Mapping of the concurrent state machine into
programmable logic .............................. 363
14.5.3. HDL modeling and synthesis of SM-components ..... 364
14.6. Conclusions ............................................. 366
References .................................................... 367
15. Design of control units with programmable logic devices
A. Barkalov and L. Titarenko .............................. 371
15.1. Introduction ............................................ 371
15.2. Design and optimization of the Moore FSM ................ 373
15.3. Design of microprogram control units .................... 378
15.4. Design and optimization of compositional microprogram
control units ........................................... 382
15.5. Conclusions ............................................. 389
References .................................................... 390
16. Direct PWM AC choppers and frequency converters
Z. Fedyczak, P. Szczesniak and J. Kaniewski ............... 393
16.1. Introduction ............................................ 393
16.2. PWM AC line choppers .................................... 394
16.2.1. General description ............................. 394
16.2.2. Modelling ....................................... 398
16.2.3. Selected simulation and experimental test
results ......................................... 406
16.3. Matrix-reactance frequency converters ................... 409
16.3.1. General description ............................. 409
16.3.2. Modelling ....................................... 413
16.3.3. Selected simulation test results ................ 416
16.4. Conclusions and further research ........................ 421
References .................................................... 421
17. Analysis of processes in converter systems
I. Ye, Korotyeyev and R. Kasperek ......................... 425
17.1. Introduction ............................................ 425
17.2. Analysis of processes in a DC/DC converter .............. 426
17.2.1. Mathematical model .............................. 426
17.2.2. Calculation of processes and stability in
closed-loop systems ............................. 428
17.2.3. Processes identification ........................ 431
17.3. Analysis of processes in systems with a power
conditioner ............................................. 434
17.3.1. Mathematical model .............................. 434
17.3.2. Determination of a steady-state process ......... 437
17.3.3. Calculation of steady-state processes ........... 440
17.4. Conclusions ............................................. 441
References .................................................... 441
18. Electromagnetic compatibility in power electronics
A. Kempski, R. Smolenski and E. Kot ....................... 443
18.1. Introduction ............................................ 443
18.2. Conducted EMI in power electronic systems ............... 445
18.3. Electromagnetic interferences in power converter
drives .................................................. 447
18.3.1. EMI currents in a PWM two-quadrant inverter
drive ........................................... 447
18.3.2. EMI currents in a PWM four-quadrant inverter
drive ........................................... 449
18.4. Special EMC problems in inverter-fed drives ............. 453
18.4.1. Bearing currents ................................ 453
18.4.2. Transmission line phenomena ..................... 456
18.5. EMI mitigating techniques ............................... 458
18.5.1. Series reactors ................................. 459
18.5.2. CM choke ........................................ 460
18.5.3. CM transformer .................................. 461
18.5.4. Comparison of the influence of passive EMI filters
on internal EMC of drives ....................... 461
18.5.5. Zero CM voltage sinusoidal filter ............... 465
18.6. Conclusions ............................................. 466
References..................................................... 468
19. Power electronics systems to improve the quality of delivery
of electrical energy
G. Benysek, M. Jarnut and J. Rusinski ..................... 471
19.1. Introduction ............................................ 471
19.2. Modern power electronics systems for transmission
control ................................................. 475
19.2.1. SSSC based interline power flow controllers ..... 476
19.2.2. Combined interline power flow controllers ....... 480
19.2.3. Interline power flow controllers - probabilistic
dimensioning .................................... 483
19.3. Compensating type custom power systems .................. 487
19.3.1. Single phase UPQC ............................... 487
19.3.2. Three phase UPQC ................................ 488
19.3.3. Voltage active power filter ..................... 490
19.4. Future works ............................................ 499
References .................................................... 502
|