Measurements models systems and design (Warszawa, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаMeasurements models systems and design / ed by. Korbicz J. - Warszawa: Wydawnictwa Komunikacji i Łączności, 2007. - 507 s. - ISBN 978-83-206-1644-6
 

Оглавление / Contents
 
1. Measurement and reproduction of a complex voltage ratio
   with the application of digital signal processing algorithms
      R. Rybski and J. Kaczmarek ................................ 1

1.1. Introduction ............................................... 1
1.2. Digital sine-wave sources for the reproduction of the complex
     voltage ratio .............................................. 2
     1.2.1. Complex voltage ratio ............................... 2
     1.2.2. Digital sine-wave sources ........................... 3
            1.2.2.1. Sinusoidal voltage generation based on direct
                     digital synthesis techniques ............... 3
            1.2.2.2. Accuracy of digital sources of the sinusoidal
                     voltage .................................... 8
1.3. Complex voltage measurement using the discrete Fourier
     transform ................................................. 11
     1.3.1.  Sampling method for the measurement of a complex
             voltage ratio ..................................... 11
     1.3.2.  Error sources of complex voltage ratio measurement
             by the sampling method ............................ 13
1.4. Application examples of circuits for the measurement and
     reproduction of the complex voltage ratio ................. 17
     1.4.1. Impedance bridge with two voltage sources .......... 17
     1.4.2. Virtual bridge ..................................... 20
     1.4.3. AC power calibrator ................................ 23
1.5. Summary ................................................... 23
References ..................................................... 25

2. Estimation of correlation functions on the basis of digital
   signal representation
   J. Lal-Jadziak .............................................. 29

2.1. Introduction .............................................. 29
2.2. Statistical theory of quantization for moments of
     signals ................................................... 30
2.3. Estimation errors due to A/D conversion of signals ........ 34
2.4. Estimation errors caused by the application of A/D conversion
     with dither ............................................... 37
2.5. Analysis of variance component coming from quantization with
     dither .................................................... 41
2.6. Experimental research results and their assessment ........ 43
2.7. Conclusions ............................................... 45
References ..................................................... 46

3. Compensation of conditioning system imperfections in measuring
   systems
   L. Furmankiewicz, M. Koziol and R. Klosiuski ................ 49

3.1. Introduction .............................................. 49
3.2. Frequency error correction in power measurements .......... 50
     3.2.1. Frequency linear model of input circuits ........... 50
     3.2.2. Active power measurement errors .................... 52
     3.2.3. Error correction in power measurements ............. 53
     3.2.4. Transformer error correction of input circuits ..... 54
     3.2.5. Error correction in the industrial transducer ...... 55
3.3. Quasi-inverse correction filters .......................... 57
     3.3.1. Optimization problems leading to quasi-inverse
            filters ............................................ 60
     3.3.2. Solutions of optimization problems ................. 60
     3.3.3. Transfer function of quasi-inverse filters ......... 61
     3.3.4. Frequency response of quasi-inverse filters ........ 62
     3.3.5. Approximation and stability functions .............. 63
     3.3.6. Signal processing by quasi-inverse filters ......... 63
     3.3.7. Simulation example ................................. 64
3.4. Reconstruction of non-linear deformed periodic signals using
     the inverse circular parametric operators method .......... 65
     3.4.1. Non-linear system approximation by a sequence of
            linear time-varying systems ........................ 65
     3.4.2. Description of an LPTV system using a circular
            parametric operator ................................ 66
     3.4.3. Measurement-based determination of circular parametric
            operators for LPTV and non-linear systems .......... 67
     3.4.4. Idea of the reconstruction of the non-linear
            deformed periodic signal method .................... 70
     3.4.5. Experiments ........................................ 70
3.5. Conclusions ............................................... 73
References ..................................................... 74

4. Voltage and current calibrators
   A. Olencki, J. Szmytkiewicz and K. Urbanski ................. 77

4.1. Introduction .............................................. 77
4.2. Static model of the voltage calibrator .................... 78
     4.2.1. Definitions of the calibrator ...................... 78
     4.2.2. Model of the multifunction (DC and AC voltage and
            current) calibrator ................................ 79
     4.2.3. Open structure of the calibrator.................... 79
     4.2.4. Closed loop structure of the calibrator and error
            analysis ........................................... 80
4.3. Dynamic properties of calibrators using the closed loop
     structure ................................................. 81
4.4. Digital to analogue converters used in calibrators ........ 82
     4.4.1. Basic requirements ................................. 82
     4.4.2. PWM DACs ........................................... 83
     4.4.3. DACs with inductive voltage dividers ............... 84
4.5. Increasing the accuracy of calibrators .................... 85
4.6. Multiple output calibrators ............................... 87
4.7. Calibrator as a test system ............................... 90
4.8. Conclusions ............................................... 92
References ..................................................... 92

5. Assigning time parameters of distributed measurement-control
   systems
   E. Michta and A. Markowski .................................. 95

5.1. Introduction .............................................. 95
5.2. Reasons of delays in DMCSs ................................ 96
5.3. Time parameters assigning approaches ...................... 97
5.4. DMCS communication model .................................. 98
     5.4.1. Communication model ................................ 98
     5.4.2. System task model ................................. 100
5.5. Scheduling theory in DMCS analysis ....................... 100
     5.5.1. Task priority assignment schemes .................. 101
     5.5.2. Pre-emptive and non-pre-emptive systems ........... 102
     5.5.3. Offline schedulability analysis ................... 102
     5.5.4. Response time tests ............................... 103
5.6. DMCS simulation model .................................... 104
     5.6.1. DMCS model structure .............................. 104
     5.6.2. Simulation model based on the activity inspection
            method ............................................ 105
     5.6.3. Results of simulation ............................. 106
5.7. Verification of a simulation model ....................... 108
     5.7.1. Analytical methods ................................ 108
     5.7.2. Experimental approach ............................. 111
5.8. Simulation of DMCS ....................................... 112
     5.8.1. Influence of the DMCS and node structure on time
            system parameters ................................. 113
     5.8.2. Parameterization of the DMCS system model ......... 113
5.9. Summary .................................................. 117
References .................................................... 118

6. Sensor network design for identification of distributed
   parameter systems
   D. Ucinski, M. Patan and B. Kuczewski ...................... 121

6.1. Introduction ............................................. 121
     6.1.1. Inverse problems for distributed parameter
            systems ........................................... 121
     6.1.2. Sensor location for parameter estimation .......... 122
     6.1.3. Previous work on optimal sensor location .......... 124
     6.1.4. Our results ....................................... 126
     6.1.5. Notation .......................................... 127
6.2. Sensor location problem in question ...................... 128
6.3. Exact solution by branch-and-bound ....................... 131
     6.3.1. Outline ........................................... 131
     6.3.2. Branching rule .................................... 133
     6.3.3. Solving the relaxed problem via simplicial
            decomposition ..................................... 134
6.4. Approximate solution via continuous relaxation ........... 140
     6.4.1. Conversion to the problem of finding optimal sensor
            densities ......................................... 140
     6.4.2. Optimality conditions ............................. 141
     6.4.3. Exchange algorithm ................................ 143
6.5. Computational results .................................... 144
6.6. Concluding remarks ....................................... 148
References .................................................... 149

7. Using time series approximation methods in the modelling of
   industrial objects and processes
   W. Miczulski and R.Szulim .................................. 157

7.1. Introduction ............................................. 157
7.2. Regression models ........................................ 158
7.3. Examples of the usage of regression models ............... 161
     7.3.1. Exemplary object and process description .......... 161
     7.3.2. Knowledge acquisition from measurement data of complex
            technological process ............................. 163
     7.3.3. Diagnostics of a standard radio frequency
            generator ......................................... 168
7.4. Summary .................................................. 172
References .................................................... 173

8. Analytical methods and artificial neural networks in fault
   diagnosis and modelling of non-linear systems
   J. Korbicz, M. Witczak, K. Patan, A. Janczak and
   M. Mrugalski ............................................... 175

8.1. Introduction ............................................. 175
8.2. Observer-based FDI ....................................... 179
     8.2.1. Observers for non-linear Lipschitz systems ........ 180
     8.2.2. Extended unknown input observers .................. 182
8.3. Neural networks in FDI schemes ........................... 183
     8.3.1. Model-based approaches ............................ 184
     8.3.2. Robust model-based approach ....................... 187
     8.3.3. Knowledge-based approaches ........................ 191
     8.3.4. Data analysis-based approaches .................... 192
8.4. Applications ............................................. 193
     8.4.1. Neural network-based modelling of a DC motor ...... 193
     8.4.2. Observer-based fault detection of an induction
            motor ............................................. 197
8.5. Conclusions .............................................. 200
References .................................................... 200

9. Solving optimization tasks in the construction of diagnostic
   systems
   A. Obuchowicz, A. Pieczynski, M. Kowal and P. Pretki ....... 205

9.1. Introduction ............................................. 205
9.2. Optimization tasks in FDI system design .................. 206
9.3. Genetic programming approaches to symptom extraction
     systems .................................................. 208
     9.3.1. Input/output representation of the system
            via GP ............................................ 208
     9.3.2. Choice of the gain matrix for the robust nonlinear
            observer .......................................... 210
     9.3.3. GP approach to the state-space representation of the
            system ............................................ 211
     9.3.4. GP approach to EUIO design ........................ 212
9.4. Optimization tasks in neural models design ............... 215
     9.4.1. Optimization aspects of collecting the training set
            for an ANN ........................................ 216
     9.4.2. Evolutionary learning of ANNs ..................... 217
     9.4.3. Optimization of the ANN architecture .............. 219
9.5. Parametric uncertainty of neural networks ................ 220
     9.5.1. Adequacy of the linear approximation .............. 221
     9.5.2. Evolutionary bands for the expected response ...... 223
9.6. Neuro-fuzzy model structure and parameters tuning ........ 225
     9.6.1. Number of partition definitions for network
            inputs ............................................ 225
     9.6.2. Shape of the fuzzy set membership function ........ 226
     9.6.3. Inference and denazification modules .............. 227
     9.6.4. Neuro-Fuzzy structure optimization ................ 228
     9.6.5. Neuro-fuzzy parameters tuning ..................... 230
9.7. Conclusions .............................................. 234
References .................................................... 234

10. Linear repetitive processes and multidimensional systems
    K. Galkowski, W. Paszke and B. Sulikowski ................. 241

10.1. Introduction ............................................ 241
10.2. Models of 2D systems and repetitive processes ........... 244
      10.2.1. Discrete LRPs ................................... 244
      10.2.2. Differential LRPs ............................... 245
10.3. Stability conditions .................................... 246
10.4. LMI conditions towards stability/stabilization .......... 248
      10.4.1. Discrete LRPs ................................... 248
      10.4.2. Differential LRPs ............................... 250
10.5. Robustness analysis ..................................... 251
10.6. Guaranteed cost control ................................. 252
      10.6.1. Guaranteed cost bound ........................... 253
      10.6.2. Guaranteed cost control with a static feedback   
              controller ...................................... 253
10.7. H2 and H control ....................................... 256
      10.7.1. H norm ......................................... 257
      10.7.2. Static H controller ............................ 258
      10.7.3. H2 norm ......................................... 258
      10.7.4. Static H2 controller ............................ 259
      10.7.5. Mixed H2/H control problem ..................... 260
      10.7.6. H2/H dynamic pass profile controller ........... 261
10.8. Output feedback based controller design ................. 264
10.9. Control for performance ................................. 266
10.10. Conclusions ............................................ 270
References .................................................... 270

11. Quantum information processing with applications in
    cryptography
    R. Gielerak, E. Kuriata, M. Sawerwain and K. PavAowski .... 273

11.1. Introduction ............................................ 273
11.2. Quantum computation and quantum algorithms .............. 274
      11.2.1. Unitary standard quantum machines (UQCM) ........ 276
      11.2.2. One Way Quantum Computing Machines (1WQCM) ...... 277
      11.2.3. Adiabatic Quantum Computer Calculations
              (AQCM) .......................................... 277
      11.2.4. Discussion ...................................... 277
11.3. Semantic aspects of quantum algorithms and quantum
      programming languages ................................... 278
      11.3.1. Quantum labelled transition system .............. 279
      11.3.2. Operational description of superdense coding .... 281
11.4. Decoherence processes ................................... 281
      11.4.1. Scenario 1 - "Total decoherence" ................ 284
      11.4.2. Scenario 2 - "Cluster decoherence" .............. 284
11.5. Quantum cryptography protocols, their security and
      technological implementations ........................... 286
11.6. Quantum computer simulator and its applications ......... 291
11.7. Summary and conclusions ................................. 293
References .................................................... 293

12. Selected methods of digital image analysis and identification
    for the purposes of computer graphics
    S. Nikiel and P. Stec ..................................... 297

12.1. Introduction ............................................ 297
12.2. Complex solution to the lens distortion problem in
      photogrammetric reconstruction for digital
      archaeology ............................................. 299
      12.2.1. Basic concepts .................................. 299
      12.2.2. Modeling based on orthogonal projection ......... 299
      12.2.3. Image correction ................................ 300
      12.2.4. Virtual reconstruction .......................... 303
      12.2.5. Conclusions ..................................... 305
12.3. Extraction of multiple objects using multi-label fast
      marching ................................................ 306
      12.3.1. Initialization .................................. 306
      12.3.2. Initial segments propagation .................... 307
      12.3.3. Dynamic regularization of the motion field ...... 308
      12.3.4. Segment merging and pushing ..................... 309
      12.3.5. Stop condition .................................. 312
      12.3.6. Experiments ..................................... 312
      12.3.7. Conclusions ..................................... 317
References .................................................... 318

13. Low delay three-dimensional wavelet coding of video sequences
    A. Poplawski and W. Zajac ................................. 321

13.1. Introduction ............................................ 321
13.2. Temporal filtering in 3D wavelet coders.................. 322
      13.2.1. Temporal filters ................................ 324
              13.2.1.1. Temporal filtering with the use of Haar
                        filters....... 324
              13.2.1.2. Temporal filtering with the use of 5/3
                        filters ............................... 324
      13.2.2. Temporal filtering delay ........................ 325
      13.2.3. Estimation of results ........................... 329
13.3. Reduction of coding delay ............................... 329
      13.3.1. Modified filtering schemes ...................... 330
      13.3.2. Experimental results ............................ 333
13.4. Conclusions ............................................. 336
References .................................................... 339

14. Safe reconfigurable logic controllers design
    M. Adamski, M. Wegrzyn and A. Wegrzyn ..................... 343

14.1. Introduction ............................................ 343
      14.1.1. Background ...................................... 344
14.2. Logic controller and the binary control system .......... 346
14.3. Petri net as a specification of a concurrent state
      machine ................................................. 347
      14.3.1. Petri nets and logic controllers ................ 347
      14.3.2. Concurrent state machine ........................ 349
      14.3.3. Textual specification of Petri nets ............. 351
      14.3.4. Hierarchical interpreted Petri nets ............. 352
      14.3.5. Relation of concurrency ......................... 354
14.4. Verification and decomposition methods .................. 357
14.5. Controller synthesis .................................... 361
      14.5.1. Concurrent local state assignment ............... 361
      14.5.2. Mapping of the concurrent state machine into
              programmable logic .............................. 363
      14.5.3. HDL modeling and synthesis of SM-components ..... 364
14.6. Conclusions ............................................. 366
References .................................................... 367

15. Design of control units with programmable logic devices
    A. Barkalov and L. Titarenko .............................. 371

15.1. Introduction ............................................ 371
15.2. Design and optimization of the Moore FSM ................ 373
15.3. Design of microprogram control units .................... 378
15.4. Design and optimization of compositional microprogram
      control units ........................................... 382
15.5. Conclusions ............................................. 389
References .................................................... 390

16. Direct PWM AC choppers and frequency converters
    Z. Fedyczak, P. Szczesniak and J. Kaniewski ............... 393

16.1. Introduction ............................................ 393
16.2. PWM AC line choppers .................................... 394
      16.2.1. General description ............................. 394
      16.2.2. Modelling ....................................... 398
      16.2.3. Selected simulation and experimental test
              results ......................................... 406
16.3. Matrix-reactance frequency converters ................... 409
      16.3.1. General description ............................. 409
      16.3.2. Modelling ....................................... 413
      16.3.3. Selected simulation test results ................ 416
16.4. Conclusions and further research ........................ 421
References .................................................... 421

17. Analysis of processes in converter systems
    I. Ye, Korotyeyev and R. Kasperek ......................... 425

17.1. Introduction ............................................ 425
17.2. Analysis of processes in a DC/DC converter .............. 426
      17.2.1. Mathematical model .............................. 426
      17.2.2. Calculation of processes and stability in
              closed-loop systems ............................. 428
      17.2.3. Processes identification ........................ 431
17.3. Analysis of processes in systems with a power   
      conditioner ............................................. 434
      17.3.1. Mathematical model .............................. 434
      17.3.2. Determination of a steady-state process ......... 437
      17.3.3. Calculation of steady-state processes ........... 440
17.4. Conclusions ............................................. 441
References .................................................... 441

18. Electromagnetic compatibility in power electronics
    A. Kempski, R. Smolenski and E. Kot ....................... 443

18.1. Introduction ............................................ 443
18.2. Conducted EMI in power electronic systems ............... 445
18.3. Electromagnetic interferences in power converter
      drives .................................................. 447
      18.3.1. EMI currents in a PWM two-quadrant inverter
              drive ........................................... 447
      18.3.2. EMI currents in a PWM four-quadrant inverter
              drive ........................................... 449
18.4. Special EMC problems in inverter-fed drives ............. 453
      18.4.1. Bearing currents ................................ 453
      18.4.2. Transmission line phenomena ..................... 456
18.5. EMI mitigating techniques ............................... 458
      18.5.1. Series reactors ................................. 459
      18.5.2. CM choke ........................................ 460
      18.5.3. CM transformer .................................. 461
      18.5.4. Comparison of the influence of passive EMI filters
              on internal EMC of drives ....................... 461
      18.5.5. Zero CM voltage sinusoidal filter ............... 465
18.6. Conclusions ............................................. 466
References..................................................... 468

19. Power electronics systems to improve the quality of delivery
    of electrical energy
    G. Benysek, M. Jarnut and J. Rusinski ..................... 471

19.1. Introduction ............................................ 471
19.2. Modern power electronics systems for transmission
      control ................................................. 475
      19.2.1. SSSC based interline power flow controllers ..... 476
      19.2.2. Combined interline power flow controllers ....... 480
      19.2.3. Interline power flow controllers - probabilistic
              dimensioning .................................... 483
19.3. Compensating type custom power systems .................. 487
      19.3.1. Single phase UPQC ............................... 487
      19.3.2. Three phase UPQC ................................ 488
      19.3.3. Voltage active power filter ..................... 490
19.4. Future works ............................................ 499
References .................................................... 502


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:20 2019. Размер: 29,756 bytes.
Посещение N 1520 c 26.04.2010