Plasma and fluid turbulence: theory and modelling (Bristol, 2003). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация
ОбложкаPlasma and fluid turbulence: theory and modelling / Yoshizawa A., Itoh S.-I., Itoh K. - Bristol; Philadelphia, Pa.: Institute of Physics Pub., 2003. - 459 p. - (Series in plasma physics). - ISBN 0-7503-0871-0
 

Место хранения: 015 | Библиотека Института гидродинамики CO РАН | Новосибирск

Оглавление / Contents
 
  Preface .................................................... xvii

  Acknowledgments ............................................. xix

PART I  GENERAL INTRODUCTION .................................... 1
1 Introductory Remarks .......................................... 3
2 Structure Formation in Fluids and Plasmas ..................... 6
  2.1 Flow in a Pipe ............................................ 6
      2.1.1 Enhancement of Mixing Effects Due to Turbulence ..... 6
      2.1.2 Mean-Flow Structure Formation in Pipe Flows ......... 8
  2.2 Magnetic-Field Generation by Turbulent Motion ............. 9
  2.3 Collimation of Jets ...................................... 13
  2.4 Magnetic Confinement of Plasmas .......................... 15
      2.4.1 Magnetic Confinement and Toroidal Plasmas .......... 15
      2.4.2 Flows in Toroidal Plasmas .......................... 17
      2.4.3 Topological Change of Magnetic Surfaces ............ 17
  2.5 Nonlinearity in Transport and Structural Transition ...... 18
      2.5.1 Nonlinear Gradient - Flux Relation ................. 18
      2.5.2 Bifurcation in Flow ................................ 19
      2.5.3 Bifurcation in Structural Formation ................ 20
  References ................................................... 23

PART II  FLUID TURBULENCE ...................................... 25
  Nomenclature ................................................. 26
3 Fundamentals of Fluid Turbulence ............................. 28
  3.1 Fundamental Equations .................................... 28
  3.2 Averaging Procedures ..................................... 31
  3.3 Ensemble-Mean Equations .................................. 32
      3.3.1 Mean-Field Equations ............................... 32
      3.3.2 Turbulence Equations ............................... 33
  3.4 Homogeneous Turbulence ................................... 41
      3.4.1 Fundamental Concepts ............................... 42
      3.4.2 Kolmogorov's Scaling Law ........................... 48
      3.4.3 Failure of KoImogorov's Sealing .................... 52
      3.4.4 Two-Dimensional Turbulence ......................... 55
  3.5 Production and Diffusion Characteristics of Turbulent
      Energy ................................................... 56
  References ................................................... 59

4 Heuristic Turbulence Modelling ............................... 60
  4.1 Approaches to Turbulence ................................. 60
  4.2 Algebraic Turbulence Modelling ........................... 62
      4.2.1 Modelling of Reynolds Stress ....................... 62
      4.2.2 Modelling of Heat Flux ............................. 65
      4.2.3 Modelling of Turbulence Equations .................. 66
      4.2.4 The Simplest Algebraic Model ....................... 71
      4.2.5 Investigation into Some Representative Turbulent
            Flows .............................................. 72
  4.3 Second-Order Modelling ................................... 79
      4.3.1 Modelling of Pressure-Strain Term .................. 79
      4.3.2 Modelling of Dissipation and Transport Terms ....... 80
      4.3.3 The Simplest Second-Order Model and its
            Relationship with a Higher-Order Algebraic Model ... 81
  4.4 A Variational-Method Model ............................... 82
      4.4.1 Helicity and Vortical-Structure Persistence ........ 83
      4.4.2 Derivation of the Vorticity Equation Using
            the Variational Method ............................. 84
      4.4.3 Analysis of Swirling Pipe Flow ..................... 85
      4.4.4 Swirl Effect on Reynolds Stress .................... 88
  4.5 Subgrid-Scale Modelling .................................. 90
      4.5.1 Filtering Procedure ................................ 90
      4.5.2 Filtered Equations ................................. 92
      4.5.3 Fixed-Parameter Modelling .......................... 94
      4.5.4 Dynamic Model ...................................... 99
  References .................................................. 102

5 Statistical Theory of Fluid Turbulence ...................... 104
  5.1 Mathematical Methods Necessary for Turbulence Theory .... 104
      5.1.1 Partial Summation of Infinite Series .............. 104
      5.1.2 Gaussian Distribution Function .................... 105
      5.1.3 Solution of Differential Equation Using Method
            of Partial Summation .............................. 108
  5.2 Theoretical Approach to Inhomogcneous Turbulence ........ 110
      5.2.1 Perturbational Method to Turbulence ............... 111
      5.2.2 Introduction of Green's Function .................. 115
      5.2.3 Statistical Evaluation of Reynolds Stress ......... 125
  5.3 Contributions to Turbulence Modelling ................... 133
      5.3.1 Modelling of the Turbulent-Energy Equation ........ 133
      5.3.2 Modelling of the Mach-Number Effect ............... 135
  References .................................................. 141

PART III  MAGNETOHYDRODYNAMIC TURBULENCE: DYNAMO .............. 143
  Nomenclature ................................................ 144
6 Fundamentals of Mean-Field Theory of Dynamo ................. 146
  6.1 One-Fluid Magnetohydrodynamic Approximation ............. 146
      6.1.1 Fundamental Equations ............................. 146
      6.1.2 Nondimensional Parameters Characterizing Flows .... 150
      6.1.3 Elsasser's Variables and Conservation
            Properties ........................................ 153
  6.2 Cowling's Anti-Dynamo Theorem ........................... 154
  6.3 Mean-Field Equations .................................... 156
  6.4 Turbulence Equations .................................... 158
  References .................................................. 160

7 Theoretical Estimate of Turbulence Effects on
  Magnetic-Field Equations .................................... 161
  7.1 Kinematic Method ........................................ 161
      7.1.1 Introduction of Two Scales and Scale-Parameter
            Expansion ......................................... 161
      7.1.2 Evaluation of Turbulent Electromotive Force ....... 163
      7.1.3 Evaluation of Reynolds Stress ..................... 166
  7.2 Counter-Kinematic Method ................................ 167
      7.2.1 Scale-Parameter Expansion ......................... 167
      7.2.2 Evaluation of Turbulent Electromotive Force ....... 170
      7.2.3 Evaluation of Reynolds Stress ..................... 171
  7.3 Discussions on Dynamo Effects from Kinematic and
      Counter-Kinematic Methods ............................... 172
      7.3.1 Mathematical Features of Obtained Expressions ..... 172
      7.3.2 Physical Meanings of Obtained Expressions ......... 173
  7.4 Magnetohydrodynamic Method .............................. 176
      7.4.1 Elsasser's Variables and Two-Scale Description .... 176
      7.4.2 Perturbational Solution ........................... 178
      7.4.3 Evaluation of Elsasser's Reynolds Stress .......... 181
      7.4.4 Comparison with Kinematic and Counter-Kinematic
            Methods ........................................... 183
  References .................................................. 186

8 One-Point Dynamo Modelling with Emphasis on
  Self-Consistency ............................................ 187
  8.1 Necessity and Significance of One-Point Modelling ....... 187
  8.2 Modelling Policy and Procedures ......................... 188
  8.3 Summary of Dynamo Model ................................. 191
      8.3.1 System of Model Equations ......................... 192
      8.3.2 Model Constants ................................... 194
      8.3.3 Remarks on Characteristic Time Scales ............. 195
   References ................................................. 197

9 Typical Magnetic-Field Generation Processes ................. 198
  9.1 Dominant-Helicity Dynamo ................................ 198
      9.1.1 Convection Columns and Helicity ................... 198
      9.1.2 Mean-Field Equations .............................. 199
      9.1.3 Turbulence Equations .............................. 201
  9.2 Dominant/Cross-Helicity Slate ........................... 203
      9.2.1 Mean-Field Equations .............................. 203
      9.2.2 Turbulence Equations .............................. 205
  9.3 Traditional Kinematic Dynamos ........................... 206
      9.3.1 Alpha  Alpha Dynamo ............................... 207
      9.3.2 Alpha  Omega Dynamo ............................... 208
   References ................................................. 209

10 Application to Astro/Geophysical and Fusion Dynamos ........ 210
   10.1 Solar Magnetic Fields ................................. 210
        10.1.1 Sunspot's Magnetic Field ....................... 210
        10.1.2 Relationship of Sunspot's Polarity with Polar
               Field .......................................... 212
        10.1.3 Lorentz Force and Meridional Flow .............. 213
        10.1.4 Mean-Field-Theory Interpretation of Polarity
               Reversal ....................................... 214
   10.2 Geomagnetic Fields .................................... 215
        10.2.1 Computer SimuIation of Geodynamo ............... 215
        10.2.2 Saturation of Generated Magnetic Field ......... 216
        10.2.3 Frame-Rotation Effect on Magnetic Field ........ 218
   10.3	Collimation of Accretion-Disc Jets .................... 220
        10.3.1 Computer Simulation and Mean-Field Theory ...... 220
        10.3.2 Driving Force of Bipolar Jets .................. 220
        10.3.3 Collimation Mechanism Due to Magnetic Effect ... 222
        10.3.4 Sustainment of Turbulent State ................. 224
        10.3.5 Physical Interpretation of Jet Collimation ..... 226
   10.4 Reversed-Field Pinches of Plasmas ..................... 226
        10.4.1 Magnetic Plasma Confinement in a Torus ......... 226
        10.4.2 Derivation of Force-Free Field by Mean-Field
               Theory ......................................... 228
        10.4.3 Derivation of Force-Free Field by Variational
               Method ......................................... 229
   10.5	Plasma Rotation in Tokamaks ........................... 230
   10.6	Transport Suppression Due to Electric-Field Effects ... 233
        10.6.1 Equations with Electric-Field Effects
               Supplemented ................................... 233
        10.6.2 Analysis of Turbulent Transport Rate of
               Thermal Energy ................................. 234
        10.6.3 Effect of Radial Electric Field on
               Thermal-Energy Transport ....................... 235
   References ................................................. 237

PART IV  PLASMA TURBULENCE .................................... 239
   Nomenclature ............................................... 241
11 Equations for Plasmas ...................................... 244
   11.1 Fluid Equations ....................................... 244
   11.2 Reduced Set of Equations .............................. 245
        11.2.1 Yagi  Morton Equations ......................... 246
        11.2.2 Hasegawa-Mima Equation ......................... 248
        11.2.3 Hasegawa  Wakalani Equations ................... 249
        11.2.4 Reduced MHD Equations .......................... 250
   11.3 Reduced Set of Equations and Conservation Properly .... 250
        11.3.1 Hasegawa Mima Equation ......................... 251
        11.3.2 Three-Field Equations .......................... 252
        11.3.3 Yagi Horton Equations .......................... 253
        11.3.4 Dissipation and Transport Flux ................. 253
   11.4 Kinetic Equation ...................................... 255
        11.4.1 Vlasov Equation ................................ 255
        11.4.2 Gyro-Averaged Equations ........................ 255
   Appendix 11A  Relations in Thermodynamics and Mean-Field
                 Equation ..................................... 256
   References ................................................. 256

12 Inhomogeneity and Modes in Plasmas ......................... 258
   12.1	Linear Mode ........................................... 258
        12.1.1 Dispersion Relation ............................ 258
        12.1.2 Vlasov Equation and Linear Dielectric Tensor ... 259
   12.2	Examples of Modes ..................................... 261
        12.2.1 Ion Sound Wave, Drift Wave and Convective
               Cell ........................................... 261
        12.2.2 Shear Alfven Wave and Drift Alfven Mode ........ 263
        12.2.3 Interchange Mode ............................... 263
        12.2.4 Ion Temperature Gradient Mode .................. 264
        12.2.5 Dissipative Drift Mode ......................... 264
   12.3	Weak Turbulence Theory ................................ 264
        12.3.1 Ansatz of Weak Turbulence ...................... 264
        12.3.2 Wave Kinetic Equation .......................... 265
        12.3.3 Integral, Lyapunov Function and
               Thermodynamics ................................. 266
   12.4	Transport Matrix and Symmetry ......................... 268
   Appendix 12A  Quasilinear Theory of Transport .............. 269
   References ................................................. 272

13 Inhomogeneous Strong Turbulence ............................ 273
   13.1 Regime of Strong Plasma Turbulence .................... 273
   13.2 Concepts to Describe Inhomogeneous Turbulent
        Plasmas ............................................... 274
        13.2.1 Gradients (Magnetic Surface, Shear, etc.) ...... 274
        13.2.2 Mode, Wave, and Vortex ......................... 276
        13.2.3 Propagating Solitary Structure ................. 277
        13.2.4 Convective Cell, Zonal Flow and Streamer ....... 277
        13.2.5 Reconneclion, Island Overlapping, Braiding,
               and Mixing ..................................... 278
        13.2.6 Plume and Avalanche (Time Intermittence) ....... 279
        13.2.7 Clumps ......................................... 279
   13.3 Microscale and Mesoscale Structures and Competition ... 280
   Appendix 13A  Clumps ....................................... 281
   References ................................................. 282

14 Method for Strong Turbulence I. Renormalization and
   Statistical Method ......................................... 284
   14.1 Resonance Broadening and Renormalization in
        the Kinetic Propagator ................................ 284
        14.1.1 Renormalization of the Propagator .............. 284
        14.1.2 Strong Turbulence Limit and Fluid Model ........ 286
        14.1.3 Strong Turbulence Limit and Kubo Number ........ 287
   14.2 Nonlinear Response in Fluid-Like Equations ............ 288
        14.2.1 Short-Wavelength Fluctuations .................. 288
        14.2.2 Rapidly-Changing, Long-Wavelength
               Components ..................................... 289
        14.2.3 Static but Sheared Flow ........................ 292
        14.2.4 On Rigorous Upper Bound ........................ 292
   14.3 Renormalization in a Reduced Set of (Fluid-Like)
        Equations ............................................. 292
   14.4 Randomness and the Statistical Picture ................ 295
        14.4.1 Estimate of Random Source Term ................. 295
        14.4.2 Dynamical Equations for Correlation
               Functions ...................................... 296
        14.4.3 Langevin Equations ............................. 297
        14.4.4 Example of Three-Field Model ................... 298
   14.5 Fokker Planck Equation ................................ 300
        14.5.1 Projected Variable ............................. 300
        14.5.2 Fokker-Planck Equation ......................... 300
        14.5.3 Equilibrium Probability Density Function ....... 300
        14.5.4 H-Theorem ...................................... 300
        14.5.5 Tail in Probability Density .................... 301
   14.6 Memory Ellects and Non-Markovian Property ............. 301
   Appendix 14A  Rigorous Upper Bounds for Transport .......... 303
   References ................................................. 305

15 Methods for Strong Turbulence II. Scale Invariance
   Method ..................................................... 307
   15.1 Fluid Models .......................................... 307
        15.1.1 Reynolds Number and Drag ....................... 307
        15.1.2 Spectrum ....................................... 308
   15.2 Plasma Models ......................................... 309
        15.2.1 Transport Coefficient .......................... 309
        15.2.2 Spectrum ....................................... 311
   References ................................................. 311

16 Methods for Strong Turbulence III. Model Based on Reduced
   Variables .................................................. 313
   16.1 Lorenz Model .......................................... 313
   16.2 Shell Model ........................................... 314
        16.2.1 One-Dimensional Model .......................... 314
        16.2.2 Multiple-Bin Model ............................. 316
   16.3 K-ε Model ............................................. 317
   16.4 Mapping Models ........................................ 317
        16.4.1 Standard Map ................................... 318
        16.4.2 Other Maps ..................................... 318
   References ................................................. 319

17 Inhomogeneity-Driven Turbulence ............................ 320
   17.1	Typical Examples ...................................... 320
        17.1.1 Dissipalive Interchange Mode ................... 320
        17.1.2 Ion Temperature Gradient (ITG) Mode ............ 323
        17.1.3 Electron Temperature Gradient (ETG) Mode ....... 324
        17.1.4 Kinetic Instabilities .......................... 325
   17.2	Influence of Magnetic Field Structure ................. 326
        17.2.1 Drift Due to the Magnetic Field Gradient ....... 326
        17.2.2 Trapped Particle Instability ................... 327
        17.2.3 Toroidal Ion Temperature Gradient (ITG) Mode ... 328
        17.2.4 Current-Diffusive Ballooning Mode (CDBM)
               Turbulence ..................................... 329
   References ................................................. 329

18 Global Flow Driven by Turbulence ........................... 331
   18.1 E x B Transport and Magnetic Transport ................ 331
        18.1.1 E x B Transport ................................ 331
        18.1.2 Magnetic Braiding and Transport ................ 332
   18.2 Heat Flux ............................................. 333
        18.2.1 ITG Mode Turbulence ............................ 334
        18.2.2 CDIM Turbulence ................................ 335
        18.2.3 ETG Mode Turbulence ............................ 336
        18.2.4 Low or Negative Magnetic Shear ................. 336
   18.3 Momentum Flux and Reynolds Stress ..................... 337
        18.3.1 Anomalous Viscosity and Spontaneous Torque ..... 337
        18.3.2 Excitation of Convective Cell
               (Zonal Flow and Streamer) ...................... 338
   18.4 Resistivity and Current Diffusivity ................... 340
   References ................................................. 340

19 Generation of Structure in Flow ............................ 342
   19.1 Breakdown of Ambipolarity of Turbulent Flow ........... 342
   19.2 Generation of Zonal Flow by Drift Wave Turbulence ..... 343
   19.3 Generation of Poloidal Flow by Collisional
        Processes ............................................. 344
   19.4 Electric Field Domain Interface ....................... 345
        19.4.1 Domain and Domain Interface .................... 345
        19.4.2 Kink-Soliton-Like Structure in Zonal Flows ..... 347
        19.4.3 Soliton-Like Structure ......................... 348
        19.4.4 Poloidal Shock ................................. 350
   19.5 Streamer Formation .................................... 350
   Appendix 19A  Maxwell's Construction and Domain
                 Interface .................................... 351
                 19A.1 Nonlinear Diffusion Equation of
                       Radial Electric Field .................. 352
                 19A.2 Local Solution ......................... 352
                 19A.3 Electric Field Domain and Domain
                       Interface .............................. 353
                 19A.4 Structure of the Domain Interface ...... 354
                 19A.5 Relaxation of the Interlace ............ 355
                 19A.6 Solitary Radial Electric Field ......... 358
   References ................................................. 360

20 Flow-Shear Suppression ..................................... 362
   20.1 Effect of Flow Shear on Linear Stability .............. 362
        20.1.1 Linear Stability in Fluid Dynamics ............. 362
        20.1.2 Linear Stability in Plasma Dynamics ............ 363
   20.2 Suppression of Turbulence ............................. 365
        20.2.1 Decorrelation Rate ............................. 365
        20.2.2 Turbulence Level and Turbulent Transport ....... 367
   Appendix 20A  Effect of Radial Electric Field
                 Inhomogeneity on Domain Interface ............ 368
   References ................................................. 370

21 Subcritical Excitation ..................................... 372
   21.1 Subcritical Excitation in Neutral Fluid ............... 372
        21.1.1 Nonlinear Marginal Stability Condition ......... 372
        21.1.2 Self-Sustaining Mechanism ...................... 373
   21.2 Subcritical Excitation in Plasma Turbulence ........... 375
        21.2.1 Current-Diffusive Interchange Mode
               Turbulence ..................................... 375
        21.2.2 Nonlinear Drift Instabilities .................. 376
        21.2.3 Tearing Mode at High Pressure Gradient ......... 378
        21.2.4 Turbulence-Turbulence Transition
               (M-Mode Transition) ............................ 381
   21.3 Abrupt Transition ..................................... 382
        21.3.1 Microscopic Turbulence and Transport
               Coefficient .................................... 382
        21.3.2 MHD Modes ...................................... 382
   21.4 Bubble Formation and Suppression by Shear Flow ........ 383
   References ................................................. 384

22 Bifurcation ................................................ 386
   22.1 System with Hysteresis ................................ 387
        22.1.1 Dynamical Model Equations for Structural
               Transition ..................................... 388
        22.1.2 Nonlincarity in Gradient-Flux Relation ......... 388
        22.1.3 Simultaneous Evolution of Fluctuation, Flow
               and Gradient ................................... 391
   22.2 Self-Organized Dynamics ............................... 393
        22.2.1 Dithering ELMs ................................. 393
        22.2.2 Giant ELMs ..................................... 393
   References ................................................. 395

23 Statistical Picture of Bifurcation ......................... 397
   23.1	Statistical Approaches for Bifurcation of
        Turbulence ............................................ 397
        23.1.1 Fluctuation Dissipation Relation from
               Stochastic Equation ............................ 397
        23.1.2 Fokker Planck Equation for Macrovariable
               (Coarse-Grained Quantity) ...................... 399
        23.1.3 Steady-State Probability Density Function ...... 400
   23.2 Bifurcation Between Thermodymimical and Turbulent
        Fluctuations .......................................... 400
        23.2.1 Example of CDIM and Extended FD Relation ....... 400
        23.2.2 Phase Diagram for Thermodynamical and
               Turbulent Fluctuations ......................... 402
        23.2.3 Example of CDIM and Fokker-Planck Equation ..... 403
   23.3 Bifurcation Between Multiple Scale Length
        Turbulences ........................................... 407
        23.3.1 Scale Separation ............................... 407
        23.3.2 Extended Fluctuation Dissipation Relation ...... 408
        23.3.3 Example of the ITG and the CDIM Turbulence ..... 410
        23.3.4 Bifurcation of Turbulence with Different
               Scale Lengths .................................. 411
   Appendix 23A  Thermodynamical Equilibrium Limit ............ 414
   References ................................................. 416

24 Transition Probability ..................................... 417
   24.1 Transition by Noise ................................... 417
        24.1.1 Rate Equation and Transition Probability ....... 418
        24.1.2 Flux of Probability and Probability of
               Transition ..................................... 419
        24.1.3 Transition Probability ......................... 421
   24.2 Transition Between Thermodymimical and Turbulent
        Fluctuations .......................................... 421
        24.2.1 Transition from Thermodynamical Fluctuations ... 421
        24.2.2 Thermodynamical Equilibrium Limit .............. 422
        24.2.3 Transition to Turbulent Fluctuations ........... 422
        24.2.4 Back Transition Probability .................... 423
        24.2.5 Example of Strong Turbulence ................... 425
   24.3 Phase Boundary in Statistical Theory .................. 426
        24.3.1 Phase Boundary ................................. 426
        24.3.2 Averaging Time and Observation of Hysteresis ... 427
   24.4 Probabilistic Transition .............................. 429
   References ................................................. 430

25 Transient Response and Transport ........................... 431
   25.1 Long Scale Length of Fluctuations and Transient
        Response .............................................. 431
   25.2 Fluctuations with Long Correlation Length ............. 432
        25.2.1 Statistical Noise Excitation ................... 433
        25.2.2 Geometrical Effect and Long Correlation
               Length ......................................... 434
        25.2.3 Kubo Number and Effective Transient Transport
               Coefficient .................................... 435
   25.3 Memory Effects ........................................ 436
   25.4 Fast Propagation of Bump .............................. 437
   25.5 Plume, Avalanche and Self-Organized Critically ........ 437
   Appendix 25A  Nonlocal Transport and Transient Response .... 439
   References ................................................. 441

26 Thermodynamical Equilibrium Fluctuations and Far
   Nonequilibrium Turbulence .................................. 443
   26.1 Thermodynamical Equilibrium ........................... 443
        26.1.1 Neutral Fluid .................................. 443
        26.1.2 Description by the Hasegawa  Mima Equation ..... 444
        26.1.3 Description by the Hasegawa-Wakatani
               Equations ...................................... 444
        26.1.4 Representation by Use of Beltrami Functions .... 445
        26.1.5 Correlation Functions and Plasma Property ...... 445
   26.2 Nonequilibrium Property and Intermittency ............. 446
   26.3 Comparison of Cases for Strong Turbulence and
        Thermodynamical Equilibrium ........................... 448
   References ................................................. 450

   Summary .................................................... 451

   Index ...................................................... 453


[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:20 2019. Размер: 32,394 bytes.
Посещение N 1842 c 26.04.2010