Novotny L. Principles of nano-optics (Cambridge, 2006). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаNovotny L. Principles of nano-optics / Novotny L., Hecht B. - Cambridge: Cambridge University Press, 2006. - 539 p. - ISBN 978-0-521-83224-3
 

Оглавление / Contents
 
Preface ........................................................ xv

1.  Introduction ................................................ 1
    1.1.  Nano-optics in a nutshell ............................. 3
    1.2.  Historical survey ..................................... 5
    1.3.  Scope of the book ..................................... 7
    References	11

2.  Theoretical foundations .................................... 13
    2.1.  Macroscopic electrodynamics .......................... 14
    2.2.  Wave equations ....................................... 15
    2.3.  Constitutive relations ............................... 15
    2.4.  Spectral representation of time-dependent fields ..... 17
    2.5.  Time-harmonic fields ................................. 17
    2.6.  Complex dielectric constant .......................... 18
    2.7.  Piecewise homogeneous media .......................... 19
    2.8.  Boundary conditions .................................. 19
          2.8.1. Fresnel reflection and transmission 
                 coefficients .................................. 21
    2.9.  Conservation of energy ............................... 23
    2.10. Dyadic Green's functions ............................. 25
          2.10.1.Mathematical basis of Green's functions ....... 25
          2.10.2.Derivation of the Green's function for the 
                 electric field ................................ 26
          2.10.3.Time-dependent Green's functions .............. 30
    2.11. Evanescent fields .................................... 31
          2.11.1.Energy transport by evanescent waves .......... 35
          2.11.2.Frustrated total internal reflection .......... 36
    2.12. Angular spectrum representation of optical fields .... 38
          2.12.1.Angular spectrum representation of the 
                 dipole field .................................. 42
    Problems ................................................... 43
    References ................................................. 43

3.  Propagation and focusing of optical fields ................. 44
    3.1.  Field propagators .................................... 45
    3.2.  Paraxial approximation of optical fields ............. 47
          3.2.1. Gaussian laser beams .......................... 49
          3.2.2. Higher-order laser modes ...................... 51
          3.2.3. Longitudinal fields in the focal region ....... 51
    3.3.  Polarized electric and polarized magnetic fields ..... 53
    3.4.  Far-fields in the angular spectrum representation .... 54
    3.5.  Focusing of fields ................................... 56
    3.6.  Focal fields ......................................... 61
    3.7.  Focusing of higher-order laser modes ................. 66
    3.8.  Limit of weak focusing ............................... 71
    3.9.  Focusing near planar interfaces ...................... 72
    3.10. Reflected image of a strongly focused spot ........... 78
    Problems ................................................... 86
    References ................................................. 87

4.  Spatial resolution and position accuracy ................... 89
    4.1.  The point-spread function ............................ 89
    4.2.  The resolution Hmit(s) ............................... 95
          4.2.1.  Increasing resolution through selective
                  excitation ................................... 98
          4.2.2.  Axial resolution ............................ 100
          4.2.3.  Resolution enhancement through saturation ... 102
    4.3.  Principles of confocal microscopy ................... 105
    4.4.  Axial resolution in multiphoton microscopy .......... 110
    4.5.  Position accuracy ................................... 111
          4.5.1.  Theoretical background ...................... 112
          4.5.2.  Estimating the uncertainties of fit
                  parameters .................................. 115
    4.6.  Principles of near-field optical microscopy ......... 121
          4.6.1.  Information transfer from near-field to
                  far-field ................................... 125
    Problems .................................................. 131
    References ................................................ 132

5.  Nanoscale optical microscopy .............................. 134
    5.1.  Far-field illumination and detection ................ 134
          5.1.1.  Confocal microscopy ......................... 134
    5.2.  Near-field illumination and far-field detection ..... 147
          5.2.1.  Aperture scanning near-field optical
                  microscopy .................................. 148
          5.2.2.  Field-enhanced scanning near-field optical
                  microscopy .................................. 149
    5.3.  Far-field illumination and near-field detection ..... 157
          5.3.1.  Scanning tunneling optical microscopy ....... 157
          5.3.2.  Collection mode near-field optical
                  microscopy .................................. 162
    5.4.  Near-field illumination and near-field detection .... 163
    5.5.  Other configurations: energy-transfer microscopy .... 165
    5.6.  Conclusion .......................................... 169
    Problems .................................................. 169
    References ................................................ 169

6.  Near-field optical probes ................................. 173
    6.1.  Dielectric probes ................................... 173
          6.1.1.  Tapered optical fibers ...................... 174
          6.1.2.  Tetrahedral tips ............................ 179
    6.2.  Light propagation in a conical dielectric probe ..... 179
    6.3.  Aperture probes ..................................... 182
          6.3.1.  Power transmission through aperture
                  probes ...................................... 184
          6.3.2.  Field distribution near small apertures ..... 189
          6.3.3.  Near-field distribution of aperture
                  probes ...................................... 193
          6.3.4.  Enhancement of transmission and
                  directionality .............................. 195
    6.4.  Fabrication of aperture probes ...................... 197
          6.4.1.  Aperture formation by focused ion
                  beam milling ................................ 200
          6.4.2.  Electrochemical opening and closing
                  of apertures ................................ 201
          6.4.3.  Aperture punching ........................... 202
          6.4.4.  Microfabricated probes ...................... 203
    6.5.  Optical antennas: tips, scatterers, and bowties ..... 208
          6.5.1.  Solid metal tips ............................ 208
          6.5.2.  Particle-plasmon probes ..................... 215
          6.5.3.  Bowtie antenna probes ....................... 218
    6.6.  Conclusion .......................................... 219
    Problems .................................................. 220
    References ................................................ 220

7.  Probe-sample distance control ............................. 225
    7.1.  Shear-force methods ................................. 226
          7.1.1.  Optical fibers as resonating beams .......... 227
          7.1.2.  Tuning-fork sensors ......................... 230
          7.1.3.  The effective harmonic oscillator model ..... 232
          7.1.4.  Response time ............................... 234
          7.1.5.  Equivalent electric circuit ................. 236
    7.2.  Normal force methods ................................ 238
          7.2.1.  Tuning fork in tapping mode ................. 239
          7.2.2.  Bent fiber probes ........................... 240
    7.3.  Topographic artifacts ............................... 240
          7.3.1.  Phenomenological theory of artifacts ........ 243
          7.3.2.  Example of near-field artifacts ............. 245
          7.3.3.  Discussion .................................. 246
    Problems .................................................. 247
    References ................................................ 248

8.  Light emission and optical interactions in nanoscale
    environments .............................................. 250
    8.1.  The multipole expansion ............................. 251
    8.2.  The classical particle-field Hamiltonian ............ 255
          8.2.1.  Multipole expansion of the interaction
                  Hamiltonian ................................. 258
    8.3.  The radiating electric dipole ....................... 260
          8.3.1.  Electric dipole fields in a homogeneous
                  space ....................................... 261
          8.3.2.  Dipole radiation ............................ 265
          8.3.3.  Rate of energy dissipation in
                  inhomogeneous environments .................. 266
          8.3.4.  Radiation reaction .......................... 268
    8.4.  Spontaneous decay ................................... 269
          8.4.1.  QED of spontaneous decay .................... 270
          8.4.2.  Spontaneous decay and Green's dyadics ....... 273
          8.4.3.  Local density of states ..................... 276
    8.5.  Classical lifetimes and decay rates ................. 277
          8.5.1.  Homogeneous environment ..................... 277
          8.5.2.  Inhomogeneous environment ................... 281
          8.5.3.  Frequency shifts ............................ 282
          8.5.4.  Quantum yield ............................... 283
    8.6.  Dipole-dipole interactions and energy transfer ...... 284
          8.6.1.  Multipole expansion of the Coulombic
                  interaction ................................. 284
          8.6.2.  Energy transfer between two particles ....... 285
    8.7.  Delocalized excitations (strong coupling) ........... 294
          8.7.1.  Entanglement ................................ 299
    Problems .................................................. 300
    References ................................................ 302

9.  Quantum emitters .......................................... 304
    9.1.  Fluorescent molecules ............................... 304
          9.1.1.  Excitation .................................. 305
          9.1.2.  Relaxation .................................. 306
    9.2.  Semiconductor quantum dots .......................... 309
          9.2.1.  Surface passivation ......................... 310
          9.2.2.  Excitation .................................. 312
          9.2.3.  Coherent control of excitons ................ 313
    9.3.  The absorption cross-section ........................ 315
    9.4.  Single-photon emission by three-level systems ....... 318
          9.4.1.  Steady-state analysis ....................... 319
          9.4.2.  Time-dependent analysis ..................... 320
    9.5.  Single molecules as probes for localized fields ..... 325
          9.5.1.  Field distribution in a laser focus ......... 327
          9.5.2.  Probing strongly localized fields ........... 329
    9.6.  Conclusion .......................................... 332
    Problems .................................................. 333
    References ................................................ 333

10. Dipole emission near planar interfaces .................... 335
    10.1. Allowed and forbidden light ......................... 336
    10.2. Angular spectrum representation of the dyadic
          Green's function .................................... 338
    10.3. Decomposition of the dyadic Green's function ........ 339
    10.4. Dyadic Green's functions for the reflected and
          transmitted fields .................................. 340
    10.5. Spontaneous decay rates near planar interfaces ...... 343
    10.6. Far-fields .......................................... 346
    10.7. Radiation patterns .................................. 350
    10.8. Where is the radiation going? ....................... 353
    10.9. Magnetic dipoles .................................... 356
    10.10.Image dipole approximation .......................... 357
          10.10.1.Vertical dipole ............................. 358
          10.10.2.Horizontal dipole ........................... 359
          10.10.3.Including retardation ....................... 359
    Problems .................................................. 360
    References ................................................ 361

11. Photonic crystals and resonators .......................... 363
    11.1. Photonic crystals ................................... 363
          11.1.1. The photonic bandgap ........................ 364
          11.1.2. Defects in photonic crystals ................ 368
    11.2. Optical microcavities ............................... 370
    Problems .................................................. 377
    References ................................................ 377

12. Surface plasmons .......................................... 378
    12.1. Optical properties of noble metals .................. 379
          12.1.1. Drude-Sommerfeld theory ..................... 380
          12.1.2. Interband transitions ....................... 381
    12.2. Surface plasmon polaritons at plane interfaces ...... 382
          12.2.1. Properties of surface plasmon polaritons .... 386
          12.2.2. Excitation of surface plasmon polaritons .... 387
          12.2.3. Surface plasmon sensors ..................... 392
    12.3. Surface plasmons in nano-optics ..................... 393
          12.3.1. Plasmons supported by wires and particles ... 398
          12.3.2. Plasmon resonances of more complex
                  structures .................................. 407
          12.3.3. Surface-enhanced Raman scattering ........... 410
    12.4. Conclusion .......................................... 414
    Problems .................................................. 414
    References ................................................ 416

13. Forces in confined fields ................................. 419
    13.1. Maxwell's stress tensor ............................. 420
    13.2. Radiation pressure .................................. 423
    13.3. The dipole approximation ............................ 424
          13.3.1. Time-averaged force ......................... 426
          13.3.2. Monochromatic fields ........................ 427
          13.3.3. Saturation behavior for near-resonance
                  excitation .................................. 429
          13.3.4. Beyond the dipole approximation ............. 432
    13.4. Optical tweezers .................................... 433
    13.5. Angular momentum and torque ......................... 436
    13.6. Forces in optical near-fields ....................... 437
    13.7. Conclusion .......................................... 443
    Problems .................................................. 443
    References ................................................ 444

14. Fluctuation-induced interactions .......................... 446
    14.1. The fluctuation-dissipation theorem ................. 446
          14.1.1. The system response function ................ 448
          14.1.2. Johnson noise ............................... 452
          14.1.3. Dissipation due to fluctuating external
                  fields ...................................... 454
          14.1.4. Normal and antinormal ordering .............. 455
    14.2. Emission by fluctuating sources ..................... 456
          14.2.1. Blackbody radiation ......................... 458
          14.2.2. Coherence, spectral shifts and heat
                  transfer .................................... 459
    14.3. Fluctuation-induced forces .......................... 461
          14.3.1. The Casimir-Polder potential ................ 463
          14.3.2. Electromagnetic friction .................... 467
    14.4. Conclusion .......................................... 472
    Problems .................................................. 472
    References ................................................ 473

15. Theoretical methods in nano-optics ........................ 475
    15.1. The multiple multipole method ....................... 476
    15.2. Volume integral methods ............................. 483
          15.2.1. The volume integral equation ................ 484
          15.2.2. The method of moments (MOM) ................. 490
          15.2.3. The coupled dipole method (CDM) ............. 490
          15.2.4. Equivalence of the MOM and the CDM .......... 492
    15.3. Effective polarizability ............................ 494
    15.4. The total Green's function .......................... 495
    15.5. Conclusion and outlook .............................. 496
    Problems .................................................. 497
    References ................................................ 498

Appendix A. Semianalytical derivation of the atomic
    polarizability ............................................ 500
    A.1. Steady-state polarizability for weak
         excitation fields .................................... 504
    A.2. Near-resonance excitation in absence of damping ...... 506
    A.3. Near-resonance excitation with damping ............... 508

Appendix В. Spontaneous emission in the weak coupling
            regime ............................................ 510
    B.1. Weisskopf-Wigner theory .............................. 510
    B.2. Inhomogeneous environments ........................... 512
    References ................................................ 514

Appendix С. Fields of a dipole near a layered substrate ....... 515
    C.1. Vertical electric dipole ............................. 515
    C.2. Horizontal electric dipole ........................... 516
    C.3. Definition of the coefficients Aj, Вj, and Сj ......... 519

Appendix D. Far-field Green's functions ....................... 521

Index ......................................................... 525


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:52:18 2019. Размер: 22,300 bytes.
Посещение N 2255 c 26.04.2010